Transcript ktws1 8282

Multilayer Formulation of the Multi-Configuration
Time-Dependent Hartree Theory
Haobin Wang
Department of Chemistry and Biochemistry
New Mexico State University
Las Cruces, New Mexico, USA
Collaborator: Michael Thoss
Support: NSF
Outline
• Conventional brute-force approach to wave packet propagation
• Multi-configuration time-dependent Hartree (MCTDH) method
• Multilayer formulation of MCTDH (ML-MCTDH)
• Quantum simulation of time correlation functions
• Application to ultrafast electron transfer reactions
Conventional Wave Packet Propagation
• Dirac-Frenkel variational principle
• Conventional Full CI Expansion (orthonormal basis)
• Equations of Motion
• Capability: <10 degrees of freedom (<~n10 configurations)
even for separable limit
Multi-Configuration Time-Dependent Hartree
• Multi-configuration expansion of the wave function
• Variations
• Both expansion coefficients and configurations are time-dependent
Meyer, Manthe, Cederbaum, Chem. Phys. Lett. 165 (1990) 73
MCTDH Equations of Motion
• Some notations
MCTDH Equations of Motion
• Reduced density matrices and mean-field operators
The “single hole” function
Implementation of the MCTDH
•
Full CI expansion of the single particle functions (mode grouping and
adiabatic basis contraction)
•
Only a few single particle functions are selected among the full CI space
 Example: 5 single particle groups, each has 1000 basis functions
 Conventional approach: 10005 = 1015 configurations
 MCTDH with 10 single particle functions per group:
10×1000×5 + 105 = 1.5×105 parameters
•
Capability of the MCTDH theory: ~10×10 = 100 degrees of freedom
Multi-Layer Formulation of the MCTDH Theory
• Multi-configurational expansion of the SP functions
• More complex way of expressing the wave function
• Two-layer MCTDH
Wang, Thoss, J. Chem. Phys. 119 (2003) 1289
The Multilayer MCTDH Theory
…….
Wang, Thoss, J. Chem. Phys. 119 (2003) 1289
The Multilayer MCTDH Theory
Wang, Thoss, J. Chem. Phys. 119 (2003) 1289
Exploring Dynamical Simplicity Using ML-MCTDH
Conventional
MCTDH
ML-MCTDH
•
Capability of the two-layer ML-MCTDH:
~10×10×10 = 1000 degrees of freedom
•
Capability of the three-layer ML-MCTDH:
~10×10×10×10 = 10000 degrees of freedom
The Scaling of the ML-MCTDH Theory
•
•
•
•
f: the number of degrees of freedom
L: the number of layers
N: the number of (contracted) basis functions
n: the number of single-particle functions
The Scaling of the ML-MCTDH Theory
• The Spin-Boson Model
• Hamiltonian
electronic
nuclear
coupling
• Bath spectral density
Model Scaling of the ML-MCTDH Theory
Model Scaling of the ML-MCTDH Theory
Model Scaling of the ML-MCTDH Theory
Simulating Time Correlation Functions
• Examples
• Imaginary Time Propagation and Monte Carlo Sampling
Quantum Study of Transport Processes
Electron transfer at dyesemiconductor interfaces
Photochemical reactions
hν
hν
trans
ecis
Electron transfer in mixed-valence
compounds in solution
Charge transport through single
molecule junctions
ehν
V
Basic Models
|d>
|k>
pump
probe
hν
|g>
Intervalence Electron Transfer
hν
hν
• Experiment: - Back ET in ≈ 100 – 200 fs
- Coherent structure in Pump-Probe signal
Photoinduced ET in Mixed-Valence Complexes
Experiment [Barbara et al., JPC A 104 (2000)
10637]: ET bimodal decay ≈ 100 fs / 2 ps
Wang, Thoss, J. Phys. Chem. A 107 (2003) 2126
hν
Validity of Different Methods
Mean-field (Hartree)
Classical Ehrenfest
Self-consistent hybrid
Golden rule (NIBA)
Vibrational Dynamics in Intervalence ET
Charge-Transfer State
Ground state
Thoss, Wang, Domcke, Chem. Phys. 296 (2004) 217
Electron-transfer at dye-semiconductor interfaces
ehν
Zimmermann, Willig, et al., J. Chem. Phys. B 105 (2001) 9345
Example: Coumarin 343 – TiO2
hν
e-
ET at dye-semiconductor interfaces: Coumarin 343 - TiO2
ET at dye-semiconductor interfaces: Coumarin 343 - TiO2
Absorption spectra
C343 adsorbed
on TiO2
C343 in solution
experiment
simulation
Experiment: Huber et al., Chem. Phys. 285 (2002) 39
ET at dye-semiconductor interfaces: Coumarin 343 - TiO2
|k>
|d>
hν
|g>
Experiments:
electron injection 20 - 200 fs
Rehm, JCP 100 (1996) 9577
Murakoshi, Nanostr. Mat. 679 (1997) 221
Gosh, JPCB 102 (1998) 10208
Huber,
Chem. Phys. 285 (2002) 39
Kondov, Thoss, Wang, J. Phys. Chem. A 110 (2006) 1364
population of the donor state
ET at dye-semiconductor interfaces: Coumarin 343 - TiO2
vibrational dynamics
|k>
donor state
|d>
hν
|g>
acceptor states
ω = 1612 cm-1
ET at dye-semiconductor interfaces: Coumarin 343 - TiO2
vibrational dynamics
|d>
|k>
donor state
hν
|g>
acceptor states
ω = 133 cm-1
Vibrational motion induced by ultrafast ET
ET at dye-semiconductor interfaces
Electron injection dynamics - comparison of different methods
|d>
|k>
population of the donor state
hν
|g>
ML-MCTDH
Ehrenfest
Mean-Field (Hartree)
ET at dye-semiconductor interfaces: Coumarin 343 - TiO2
Simulation of the dynamics including the coupling to the laser field
photoinduced electron injection dynamics
acceptor population
|k>
donor population
|d>
hν
|g>
laser pulse (5 fs)
ET at dye-semiconductor interfaces: Coumarin 343 - TiO2
Simulation of the dynamics including the coupling to the laser field
photoinduced electron injection dynamics
acceptor population
|k>
donor population
|d>
hν
|g>
laser pulse (20 fs)
ET at dye-semiconductor interfaces: Coumarin 343 - TiO2
Simulation of the dynamics including the coupling to the laser field
photoinduced electron injection dynamics
acceptor population
|k>
donor population
laser pulse
(40 fs)
|d>
hν
|g>
ET at dye-semiconductor interfaces: Alizarin - TiO2
population of the donor state
Experiment:
electron injection 6 fs
Huber, Moser, Grätzel, Wachtveitl,
J. Phys. Chem. B 106 (2002) 6494
Summary of the ML-MCTDH Theory
• Powerful tool to propagate wave packet in complex systems
• Can reveal various dynamical information
– population dynamics and rate constant
– reduced wave packet motions
– time-resolved nonlinear spectroscopy
– dynamic/static properties: real and imaginary time
• Current status
– Has been implemented for certain potential energy functions: twobody, three-body, etc.
– The (time-dependent) correlation DVR of Manthe
• Challenges
– Implementation: somewhat difficult
– Long time dynamics: “chaos”