Download Here

Download Report

Transcript Download Here

Difference of Convex (DC)
Decomposition of
Nonconvex Polynomials with
Algebraic Techniques
Georgina Hall
Princeton, ORFE
Joint work with
Amir Ali Ahmadi
Princeton, ORFE
7/26/2016
INFORMS 2015
1
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Difference of Convex (DC) programming
β€’ Problems of the form
min 𝑓0 (π‘₯)
𝑠. 𝑑. 𝑓𝑖 π‘₯ ≀ 0
where:
β€’ 𝑓𝑖 π‘₯ ≔ 𝑔𝑖 π‘₯ βˆ’ β„Žπ‘– π‘₯ , 𝑖 = 0, … , π‘š,
β€’ 𝑔𝑖 : ℝ𝑛 β†’ ℝ, β„Žπ‘– : ℝ𝑛 β†’ ℝ are convex.
β€’ Appears in:
β€’ Machine learning and statistics
β€’ Statistical physics
β€’ Communications and networks, etc.
2
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Convex-Concave Procedure (CCP)
β€’ Heuristic for minimizing DC programming problems.
β€’ Idea:
Input
π‘˜β‰”0
xπ‘₯0 , initial point
𝑓𝑖 = 𝑔𝑖 βˆ’ β„Žπ‘– ,
𝑖 = 0, … , π‘š
Convexify by linearizing 𝒉
xπ’‡π’Œπ’Š 𝒙 = 𝑔𝑖 π‘₯ βˆ’ (β„Žπ‘– π‘₯π‘˜ + π›»β„Žπ‘– π‘₯π‘˜
convex convex
π’‡π’Œπ’Š 𝒙
𝑇
Solve convex subproblem
π‘₯ βˆ’ π‘₯π‘˜ )
affine
π‘˜ β‰”π‘˜+1
Take π‘₯π‘˜+1 to be the solution of
min 𝑓0π‘˜ π‘₯
𝑠. 𝑑. π‘“π‘–π‘˜ π‘₯ ≀ 0, 𝑖 = 1, … , π‘š
π’‡π’Š (𝒙)
3
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Convex-Concave Procedure (CCP)
β€’ Toy example: min 𝑓 π‘₯ , where 𝑓 π‘₯ ≔ 𝑔 π‘₯ βˆ’ β„Ž(π‘₯)
π‘₯
Convexify 𝑓 π‘₯ to
obtain 𝑓 0 (π‘₯)
Initial point: π‘₯0 = 2
Minimize 𝑓 0 (π‘₯) and
obtain π‘₯1
Reiterate
π‘₯π‘₯π‘₯∞43π‘₯π‘₯2 1
π‘₯0
4
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
CCP for nonconvex polynomial optimization problems (1/2)
CCP relies on the input functions being given as the difference of
convex functions.
β€’ Any π‘ͺ𝟐 function can be written as a difference of convex functions.
β€’ In fact, infinite number of difference of convex decompositions.
Initial decomposition
x𝑓 π‘₯ = 𝑔 π‘₯ βˆ’ β„Ž(π‘₯)
Alternative decompositions
𝑓 π‘₯ = 𝑔 π‘₯ +𝑝 π‘₯ βˆ’ β„Ž π‘₯ +𝑝 π‘₯
𝑝(π‘₯) convex
How can we find such a decomposition?
Is there a way of optimizing over the set of possible decompositions?
(maybe to get a better one for CCP?)
5
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
CCP for nonconvex polynomial optimization problems (2/2)
We consider these questions for polynomials.
Definition: A polynomial 𝑔 is a dcd of 𝑓 if
β€’ 𝑔 is convex
β€’ β„Ž ≔ 𝑔 βˆ’ 𝑓 is convex
Theorem: Any polynomial has a (polynomial) dcd of the same degree.
Proof by Wang, Schwing and Urtasun. Alternative proof given later in this
presentation, as corollary of stronger theorem.
Theorem: Given two polynomials 𝑓and 𝑔 of degree β‰₯ 4, it is strongly
NP-hard to test if 𝑔 is a dcd of 𝑓.
6
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Picking the β€œbest” decomposition for CCP (1/3)
Algorithm
Linearize 𝒉 𝒙 around a point π‘₯π‘˜ to obtain convexified version of 𝒇(𝒙)
Idea
Pick β„Ž π‘₯ such that it is as close as possible to affine around π‘₯π‘˜
Mathematical translation
Minimize curvature of β„Ž at π‘₯π‘˜
Worst-case curvature*
Average curvature*
min πœ†π‘šπ‘Žπ‘₯ (π»β„Ž π‘₯π‘˜ )
min π‘‡π‘Ÿ π»β„Ž (π‘₯π‘˜ )
s.t. 𝑓 = 𝑔 βˆ’ β„Ž
𝑔, β„Ž convex
s.t. 𝑓 = 𝑔 βˆ’ β„Ž,
𝑔, β„Ž convex
g,h
*πœ†π‘šπ‘Žπ‘₯ π»β„Ž π‘₯π‘˜ = max
𝑦 𝑇 π»β„Ž π‘₯π‘˜ 𝑦
π‘›βˆ’1
π‘¦βˆˆπ‘†
𝑔,β„Ž
* π‘‡π‘Ÿ π»β„Ž π‘₯π‘˜ =
π‘¦βˆˆπ‘† π‘›βˆ’1
𝑦 𝑇 π»β„Ž π‘₯π‘˜ 𝑦 π‘‘πœŽ
7
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Picking the β€œbest” decomposition for CCP (2/3)
Definition: A dcd 𝑔 of 𝑓 is undominated if no other dcd of
𝑓 can be obtained by subtracting a convex function from 𝑔.
𝒇 𝒙 = π’™πŸ’ βˆ’ πŸ‘π’™πŸ + πŸπ’™ βˆ’ 𝟐
π’ˆ 𝒙 = π’™πŸ’ + π’™πŸ ,
𝒉 𝒙 = πŸ’π’™πŸ + πŸπ’™ βˆ’ 𝟐
Convexify around π‘₯0 = 2 to
get π’‡πŸŽ 𝒙
DOMINATED BY
π’ˆβ€² 𝒙 = π’™πŸ’ ,
𝒉′ 𝒙 = πŸ‘π’™πŸ + πŸπ’™ βˆ’ 𝟐
Convexify around π‘₯0 = 2 to
get π’‡πŸŽβ€² 𝒙
If π’ˆβ€² dominates π’ˆ then the next iterate in CCP obtained using π’ˆβ€² always beats the one obtained using π’ˆ.
8
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Picking the β€œbest” decomposition for CCP (3/3)
Theorem: Given a polynomial 𝑓, consider
(⋆)
min
𝑔
1
𝐴𝑛
𝑆 π‘›βˆ’1
π‘‡π‘Ÿ 𝐻𝑔 π‘‘πœŽ, (where 𝐴𝑛 =
2πœ‹π‘›/2
)
Ξ“(𝑛/2)
s.t. 𝑔 convex, 𝑔 βˆ’ 𝑓 convex
Any optimal solution is an undominated dcd of 𝑓 (and an optimal
solution always exists).
Theorem: If 𝑓 has degree 4, it is strongly NP-hard to solve (⋆).
How can we get around this?
9
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Convex relaxations for DC decompositions (1/5)
SOS, DSOS, SDSOS polynomials (Ahmadi, Majumdar)
β€’ Families of nonnegative polynomials.
Type
Characterization
Testing
membership
Sum of squares (sos)
βˆƒπ‘žπ‘– , polynomials, s.t. 𝑝(π‘₯) = βˆ‘π‘žπ‘–2 (π‘₯)
SDP
2
⇓
Scaled diagonally dominant
sum of squares (sdsos)
p= βˆ‘π‘– 𝛼𝑖 π‘šπ‘–2 + βˆ‘π‘–,𝑗 𝛽𝑖+ π‘šπ‘– + 𝛾𝑗+ π‘šπ‘— + π›½π‘–βˆ’ π‘šπ‘– βˆ’ π›Ύπ‘—βˆ’ π‘šπ‘—
π‘šπ‘– , π‘šπ‘— monomials, 𝛼𝑖 β‰₯ 0
Diagonally dominant
sum of squares (dsos)
+
βˆ’
p= βˆ‘π‘– 𝛼𝑖 π‘šπ‘–2 + βˆ‘π‘–,𝑗 𝛽𝑖,𝑗
π‘šπ‘– + π‘šπ‘— + 𝛽𝑖,𝑗
π‘šπ‘– βˆ’ π‘šπ‘—
+,βˆ’
π‘šπ‘– , π‘šπ‘— monomials, 𝛼𝑖 , 𝛽𝑖𝑗
β‰₯0
⇓
See talk by Sanjeeb Dash on Tuesday Nov 03, 13:30 - 15:00 (TC11).
2
2
SOCP
2
LP
10
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Convex relaxations for DC decompositions (2/5)
DSOS-convex, SDSOS-convex, SOS-convex polynomials
𝑝(π‘₯)
convex
⇔ 𝐻𝑝 π‘₯ ≽ 0, βˆ€π‘₯ ⇔
𝑦 𝑇 𝐻𝑝 π‘₯ 𝑦 β‰₯ 0,
βˆ€π‘₯, 𝑦 ∈ ℝ𝑛
⇐
𝑦 𝑇 𝐻𝑝 π‘₯ 𝑦
sos/sdsos/dsos
Definitions:
LP
β€’ 𝑝 is dsos-convex if 𝑦 𝑇 𝐻𝑝 π‘₯ 𝑦 is dsos.
β€’ 𝑝 is sdsos-convex if 𝑦 𝑇 𝐻𝑝 π‘₯ 𝑦 is sdsos. SOCP
β€’ 𝑝 is sos-convex if 𝑦 𝑇 𝐻𝑝 π‘₯ 𝑦 is sos.
SDP
Condition: 𝑓 = 𝑔 βˆ’ β„Ž,
𝑔, β„Ž convex
Condition: 𝑓 = 𝑔 βˆ’ β„Ž,
𝑔, β„Ž s/d/sos-convex
11
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Convex relaxations for DC decompositions (3/5)
Comparison of these sets on a parametric family of polynomials:
𝑝 π‘₯1 , π‘₯2 = 2π‘₯14 + 2π‘₯24 + π‘Žπ‘₯13 π‘₯2 + 𝑏π‘₯12 π‘₯22 + 𝑐π‘₯1 π‘₯23
𝑐 = βˆ’0.5
𝑐=0
𝑐=1
𝑏
𝑏
𝑏
π‘Ž
dsos-convex
π‘Ž
sdsos-convex
π‘Ž
sos-convex=convex
12
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Convex relaxations for DC decompositions (4/5)
Can any polynomial be written as the difference of two dsos/sdsos/sos
convex polynomials?
Theorem: Any polynomial can be written as the difference of two dsosconvex polynomials.
Corollary: Same holds for sdsos-convex, sos-convex and convex.
13
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Convex relaxations for DC decompositions (5/5)
Proof idea: Let 𝐾 be a full dimensional cone in a vector space 𝐸.
Then any 𝑣 ∈ 𝐸 can be written as 𝑣 = π‘˜1 βˆ’ π‘˜2 , π‘˜1 , π‘˜2 ∈ 𝐾.
=:
π‘˜β€²
Proof sketch:
K
E
βˆƒ 𝛼 < 1 such that 1 βˆ’ 𝛼 𝑣 + π›Όπ‘˜ ∈ 𝐾
π’Œ
𝒗
π’Œβ€²
1
𝛼
β€²
⇔𝑣=
π‘˜ βˆ’
π‘˜
1βˆ’π›Ό
1βˆ’π›Ό
π‘˜1 ∈ 𝐾
π‘˜2 ∈ 𝐾
What’s left to show: dsos-convex polynomials form a full-dimensional cone.
β€’ β€œObvious” choices (i.e., 𝑝 π‘₯ =
𝑑/2
2
(βˆ‘π‘– π‘₯𝑖 ) )
do not work.
14
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Comparing different decompositions (1/2)
β€’ Solving the problem:
min
𝐡= π‘₯
π‘₯ ≀𝑅}
𝑓0 , where 𝑓0 has 𝑛 = 8 and 𝑑 = 4.
β€’ Decompose 𝑓0 , run CCP for 4 minutes and compare objective value.
Feasibility
π€π’Žπ’‚π’™ 𝑯𝒉 (π’™πŸŽ )
π€π’Žπ’‚π’™,𝑩 𝑯𝒉
Undominated
min 0
min 𝑑
s.t. 𝑓0 = 𝑔 βˆ’ β„Ž
𝑔, β„Ž sos-convex
s.t. 𝑓0 = 𝑔 βˆ’ β„Ž
𝑔, β„Ž sos-convex
𝑑𝐼 βˆ’ π»β„Ž π‘₯0 ≽ 0
min 𝑑
𝑑,𝑔,β„Ž 𝑑
min
min max𝑑,𝑔,β„Ž
πœ† 𝟐 (π»β„Ž π‘₯𝟐 )
𝒕𝑰 βˆ’ 𝑔,β„Ž
𝑯𝒉 𝒙π‘₯∈B≽ π‘šπ‘Žπ‘₯
𝑹 βˆ’ βˆ‘π’™π’Š 𝝉(𝒙)
𝒙 ∈ 𝑩 ⇒𝑻 𝒕𝑰 βˆ’ 𝑯𝒉 𝒙 ≽
𝟎
s.t.
𝑓
=
𝑔
βˆ’
β„Ž,
π’šπ‘“ 𝝉(𝒙)π’š
= 𝑔 βˆ’sos
β„Ž
𝑔, β„Ž
sos-convex
𝑓
=
𝑔
βˆ’
β„Ž
𝑔, β„Ž convex
𝑔, β„Ž sos-convex
1
min
π‘‡π‘Ÿ 𝐻𝑔 π‘‘πœŽ
𝑔,β„Ž 𝐴𝑛 𝑆
π‘›βˆ’1
𝑠. 𝑑. 𝑓0 = 𝑔 βˆ’ β„Ž
𝑔, β„Ž sos-convex
g,h
g,h
15
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Comparing different decompositions (2/2)
β€’ Average over 30 iterations
β€’ Solver: Mosek
β€’ Computer: 8Gb RAM, 2.40GHz
processor
π€π’Žπ’‚π’™,𝑩 𝑯𝒉 Undominated
Feasibility π€π’Žπ’‚π’™ 𝑯𝒉 π’™πŸŽ
Conclusion: Rate of convergence of CCP strongly affected by initial
decomposition.
16
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Comparing the different relaxations (1/2)
β€’ Impact of relaxations on solving
1
min
π‘‡π‘Ÿ 𝐻𝑔 π‘‘πœŽ
𝐴𝑛 𝑆 π‘›βˆ’1
𝑠. 𝑑. 𝑓 = 𝑔 βˆ’ β„Ž, 𝑔, β„Ž s/d/sos-convex
for some random 𝑓 of degree 4.
𝒏=πŸ”
𝒏 = 𝟏𝟎
Type of
relaxation
Time
Opt value
dsos-convex
<1s
62090
<1s
sdsos-convex
<1s
53557
sos-convex
<1s
11602
Time Opt Value
𝒏 = πŸπŸ’
𝒏 = πŸπŸ”
Time
Opt value
Time
Opt value
168481
2.33s
136427
6.91s
48457
1.11s
132376
3.89s
99667
12.16s
32875
44.42s
18346
800.16s
9828
30hrs+
------------17
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Comparing the different relaxations (2/2)
Sos-Convex + CCP
Decompose
1
min
π‘‡π‘Ÿ 𝐻𝑔𝑖 π‘‘πœŽ
Convexify
𝐴𝑛 𝑆 π‘›βˆ’1
𝑓𝑖 = 𝑔𝑖 βˆ’ β„Žπ‘– ,
𝑔𝑖 , β„Žπ‘– sos-convex
1000000
0
Sdsos-Convex + multiple decomposition CCP
Solve convex
subproblem
𝒏=πŸ–
𝒏 = 𝟏𝟎
Decompose
min 𝑑
𝑑𝐼 βˆ’ π»β„Žπ‘˜ (π‘₯π‘˜ ) sdd
𝑖
𝑓𝑖 = 𝑔𝑖 βˆ’ β„Žπ‘– ,
𝑔𝑖 , β„Žπ‘– sdsos-convex
Convexify
Solve convex
subproblem
𝒏 = 𝟏𝟐
-1000000
-2000000
-3000000
-4000000
-5000000
-6000000
-7000000
β€’ Unconstrained problem with
objective of degree 4
β€’ Objective value after 4mins
β€’ Average over 30 instances
-8000000
-9000000
18
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques
Main messages
β€’ To apply CCP to polynomial optimization, a DC decomposition is
needed. Choice of decomposition impacts convergence rates.
β€’ Dcds can be efficiently obtained using convex relaxations based on
dsos-convexity (LP), sdsos-convexity (SOCP), and sos-convexity (SDP).
β€’ Dsos-convex and sdsos-convex relaxations scale to a larger number of
variables.
β€’ The choice of the method depends on the size of the problem: sosconvexity and undominated dcds for small n, s/dsos-convexity and
multiple decomposition CCP for larger n.
19
Thank you for listening
Questions?
Want to learn more? http://scholar.princeton.edu/ghall
7/26/2016
INFORMS 2015
20