Transcript Kinetics
Kinetics • Rate of reactions – can be fast or slow – defined as the change in [concentration] of the reactants or products per time • concentration of reactants decreases over time – [reactants]/time • concentration of products increase over time – [products]/time • normally measure in Molarity per sec (M/s) – will continue until reaches equilibrium or one of the reactants is used up concentration of reactants decrease over time concentration of products increase over time (reactants) Experiments for measuring rate of reactions – over time, could measure the change of: • for gaseous reactions – mass would go down as gas escapes – volume would increase at constant temp. and pressure – pressure would increase at constant temp. and volume • change in pH if acids and bases are involved • change in temperature • change in electrical conductivity – if produces ions in solution, conductivity will increase • using a spectrometer to detect color changes Analyzing data from rate experiments (CONCENTRATION, VOLUME, and MASS) • usually involves a graph of properties over time • usually a curve, and the reaction rate is determined from the slope of the line at a time (also known as a tangent) • reaction rates tend to slow with time as reactants are converted to products Example C4H9Cl(aq) + H2O(l) C4H9OH(aq) + HCl(aq) • reaction slows down with time because the CONCENTRATION of the reactants decreases • “rise over run” – .040M/200s = .0002M/s – .025M/400s = .000063M/s • the change in concentration of a reactant or product per unit of time • [ ] refer to the concentration of the reactants or products [ A] at time t 2 [ A] at time t1 Rate t 2 t1 [ A] Rate t 2NO2(g) 2NO(g) + O2(g) product [NO2] [ NO2 ] constant t t [NO2] t product reactant reaction is creating gas so gas is being released in the VOLUME increases over reaction so MASS decreases over time time Collision theory • in order for particles to react 1. particles must collide 2. must collide in the correct orientation/angle 3. must collide with enough kinetic energy to overcome the activation energy (E > Ea) • if the previous conditions are “enough”, particles can overcome the activation energy and reaction will occur – meaning the bonds holding the reactants together will be broken and the reaction can take place http://phet.colorado.edu/en/simulation/reac tions-and-rates Factors That Affect Reaction Rates • any factor that increases the frequency of collisions or increases the energy with which particles collide will make the reaction go faster: 1. 2. 3. 4. 5. temperature pressure (gas only) surface area concentration catalysts 1. Temperature • increase temp – increases number of collisions per unit time • reaction rate approximately doubles for each 10oC or K rise in temperature – increases energy of the collisions • greater chance E > Ea – will not “help with” geometry 2. Pressure • only for gasses – reducing volume while keeping temp constant increases the reaction rate • forcing them together will increase number of collisions per unit time – will not “help with” geometry and energy 3. Surface area • smaller particles have more surface area and will increase the reaction rate – more collisions per unit time – will not “help with” geometry and energy 4. Concentration • increasing concentration will increase the reaction rate by increasing more collisions per unit time • will not “help with” geometry and energy 5. Catalysts • lowers the activation energy (Ea) for the reaction • provide an alternate reaction (rxn) pathway • increase the rate of a reaction • are not used up or chemically changed in the reaction