Transcript slides

๐‘ณ๐’‘ -Testing
With P. Berman and S. Raskhodnikova (STOCโ€™14+).
Grigory Yaroslavtsev
Warren Center for Network and Data Sciences
http://grigory.us
Property Testing
[Goldreich, Goldwasser, Ron; Rubinfeld, Sudan]
Randomized Algorithm
YES
โ‡’
Property Tester
Accept with
๐Ÿ
probability โ‰ฅ
๐Ÿ‘
YES
๐-close
NO
โ‡’
Reject with
๐Ÿ
probability โ‰ฅ
๐Ÿ‘
NO
โ‡’
Accept with
๐Ÿ
probability โ‰ฅ
๐Ÿ‘
โ‡’ Donโ€™t care
โ‡’ Reject with
probability โ‰ฅ
๐-close : โ‰ค ๐ fraction has to be changed to become YES
๐Ÿ
๐Ÿ‘
Which stocks were growing?
Data from http://finance.google.com
Property testing: testing monotonicity?
Data from http://finance.google.com
Tolerant Property Testing
[Parnas, Ron, Rubinfeld]
Tolerant Property Tester
Property Tester
YES
โ‡’
Accept with
๐Ÿ
probability โ‰ฅ
๐Ÿ‘
YES
โ‡’
Accept with
๐Ÿ
probability โ‰ฅ
๐Ÿ‘
๐-close
NO
โ‡’ Donโ€™t care
Reject with
โ‡’
probability โ‰ฅ
๐๐Ÿ -close
(๐๐Ÿ , ๐๐Ÿ )-close
๐Ÿ
๐Ÿ‘
NO
โ‡’ Donโ€™t care
Reject with
โ‡’ probability โ‰ฅ ๐Ÿ
๐Ÿ‘
๐-close : โ‰ค ๐ fraction has to be changed to become YES
Tolerant monotonicity testing?
Data from http://finance.google.com
Tolerant โ€œ๐‘ณ๐Ÿ Property Testingโ€
โ€ข ๐’‡: {1, โ€ฆ , ๐‘›} โ†’ 0,1
โ€ข ๐‘ท = class of monotone
functions
โ€ข ๐‘‘๐‘–๐‘ ๐‘ก1 ๐’‡, ๐‘ท =
min ๐’‡ โˆ’๐’ˆ 1
๐’ˆโˆˆ๐‘ท
Tolerant โ€œ๐‘ณ๐Ÿ Property Testerโ€
YES
๐Ÿ‘
๐‘›
โ€ข ๐-close: ๐‘‘๐‘–๐‘ ๐‘ก1 ๐’‡, ๐‘ท โ‰ค ๐
โ€ข More general: distance
approximation
โ€ข Even more general: isotonic
regression
โ‡’
Accept with
๐Ÿ
probability โ‰ฅ
๐๐Ÿ -close
(๐๐Ÿ , ๐๐Ÿ )-close
NO
โ‡’ Donโ€™t care
Reject with
โ‡’ probability โ‰ฅ ๐Ÿ
๐Ÿ‘
๐ฟ1 -Isotonic Regression
โ€ข Pool Adjacent Violators Algorithm
โ€ข Running time O ๐‘› log ๐‘› [Folklore]
โ€ข Available in Matlab/R packages
New ๐ฟ๐‘ -Testing Model for
Real-Valued Data
โ€ข Generalizes standard Hamming testing
โ€ข For ๐‘ > 0 still has a probabilistic interpretation:
๐‘‘๐‘ ๐‘“, ๐‘” = ๐„ ๐’‡ โˆ’ ๐’ˆ ๐’‘ 1/๐‘
โ€ข Compatible with existing PAC-style learning models that
have ๐ฟ๐‘ -error (preprocessing for model selection)
โ€ข For Boolean functions, ๐‘‘0 ๐‘“, ๐‘” = ๐‘‘๐‘ ๐‘“, ๐‘” ๐‘ .
โ€ข Various distances used widely in distribution testing
Our Contributions
1. Relationships between ๐ฟ๐’‘ -testing models
2. Algorithms
โ€“ ๐ฟ๐’‘ -testers for ๐’‘ โ‰ฅ 1
โ€ข monotonicity, Lipschitzness, convexity
โ€“ Tolerant ๐ฟ๐’‘ -tester for ๐’‘ โ‰ฅ 1
โ€ข monotonicity in 1D (sublinear algorithm for isotonic regression)
โ€ข monotonicity in 2D
๏ถOur ๐ฟ๐’‘ -testers beat lower bounds for Hamming testers
๏ถSimple algorithms backed up by involved analysis
๏ถUniformly sampled (or easy to sample) data suffices
3. Nearly tight lower bounds in many cases
Implications for Hamming Testing
Some techniques/results carry over to Hamming testing
โ€“ Improvement on Levinโ€™s work investment strategy
โ€ข Connectivity of bounded-degree graphs [Goldreich, Ron โ€˜02]
โ€ข Properties of images [Raskhodnikova โ€˜03]
โ€ข Multiple-input problems [Goldreich โ€˜13]
โ€“ First example of monotonicity testing problem where
adaptivity helps
โ€“ Improvements to Hamming testers for Boolean
functions
Definitions
โ€ข ๐’‡: ๐ท โ†’ 0,1 (D = finite domain/poset)
โ€ข
๐’‡
โ€ข
๐’‡
๐’‘
๐ŸŽ
=(
๐‘ฅโˆˆ ๐ท
๐’‡ ๐‘ฅ
๐’‘ 1/๐’‘
)
, for ๐’‘ โ‰ฅ 1
= Hamming weight (# of non-zero values)
โ€ข Property ๐‘ท = class of functions (monotone,
convex, Lipschitz, โ€ฆ)
โ€ข ๐‘‘๐‘–๐‘ ๐‘ก๐’‘ ๐’‡, ๐‘ท =
min ||๐’‡ โˆ’๐‘”||๐’‘
๐‘”โˆˆ๐‘ท
1 ๐’‘
Relationships: ๐ฟ๐‘ -Testing
๐‘„๐’‘ (๐‘ท,๐) = query complexity of ๐ฟ๐’‘ -testing
property ๐‘ท at distance ๐
โ€ข ๐‘„๐Ÿ (๐‘ท,๐) โ‰ค ๐‘„๐ŸŽ (๐‘ท,๐)
โ€ข ๐‘„๐Ÿ (๐‘ท,๐) โ‰ค ๐‘„๐Ÿ (๐‘ท,๐) (Cauchy-Shwarz)
โ€ข ๐‘„๐Ÿ (๐‘ท,๐) โ‰ฅ ๐‘„๐Ÿ (๐‘ท, ๐)
Boolean functions ๐’‡: ๐ท โ†’ 0,1
๐‘„๐ŸŽ (๐‘ท,๐) = ๐‘„๐Ÿ (๐‘ท,๐) = ๐‘„๐Ÿ (๐‘ท, ๐)
Relationships: Tolerant ๐ฟ๐‘ -Testing
๐‘„๐’‘ (๐‘ท,๐๐Ÿ , ๐๐Ÿ ) = query complexity of tolerant ๐ฟ๐’‘ -testing
property ๐‘ท with distance parameters ๐๐Ÿ , ๐๐Ÿ
โ€ข No general relationship between tolerant ๐ฟ๐Ÿ -testing
and tolerant Hamming testing
โ€ข ๐ฟ๐’‘ -testing for ๐’‘ > 1 is close in complexity to ๐ฟ๐Ÿ -testing
๐’‘
๐’‘
๐‘„๐Ÿ (๐‘ท,๐œบ๐Ÿ , ๐œบ๐Ÿ ) โ‰ค ๐‘„๐’‘ (๐‘ท,๐œบ๐Ÿ , ๐œบ๐Ÿ ) โ‰ค ๐‘„๐Ÿ (๐‘ท,๐œบ๐Ÿ , ๐œบ๐Ÿ )
For Boolean functions ๐’‡: ๐ท โ†’ 0,1
๐Ÿ/๐’‘
๐Ÿ/๐’‘
๐‘„๐ŸŽ (๐‘ท,๐œบ๐Ÿ , ๐œบ๐Ÿ ) = ๐‘„๐Ÿ (๐‘ท,๐œบ๐Ÿ , ๐œบ๐Ÿ ) = ๐‘„๐’‘ (๐‘ท,๐๐Ÿ , ๐œบ๐Ÿ
)
Testing Monotonicity
โ€ข Line (๐ท = [๐’])
Upper
bound
Lower
bound
๐ฟ0
๐ฟ1
๐‘‚ (log ๐’/๐)
๐‘‚(1/๐)
[Ergun, Kannan, Kumar,
Rubinfeld,
Viswanathanโ€™00]
ฮฉ(log ๐’/๐)
[Fischerโ€™04]
ฮฉ(1/๐)
Monotonicity
๐‘‘
โ€ข Domain D=[๐‘›] (vertices of ๐‘‘-dim hypercube)
โ€ข A function ๐‘“: ๐ท โ†’ โ„ is monotone
if increasing a coordinate of ๐‘ฅ does
not decrease ๐‘“ ๐‘ฅ .
โ€ข Special case ๐‘‘ = 1
(๐‘‘, ๐‘‘, ๐‘‘)
(1,1,1)
๐‘“: [๐‘›] โ†’ โ„ is monotone โ‡” ๐‘“ 1 , โ€ฆ ๐‘“(๐‘›) is sorted.
One of the most studied properties in property testing [Ergün
Kannan Kumar Rubinfeld Viswanathan , Goldreich Goldwasser Lehman Ron, Dodis Goldreich Lehman
Raskhodnikova Ron Samorodnitsky, Batu Rubinfeld White, Fischer Lehman Newman Raskhodnikova
Rubinfeld Samorodnitsky, Fischer, Halevy Kushilevitz, Bhattacharyya Grigorescu Jung Raskhodnikova
Woodruff, ..., Chakrabarty Seshadhri, Blais, Raskhodnikova Yaroslavtsev, Chakrabarty Dixit Jha Seshadhri, โ€ฆ]
Monotonicity: Key Lemma
โ€ข M = class of monotone functions
โ€ข Boolean slicing operator ๐’‡๐’š : ๐ท โ†’ {0,1}
๐’‡๐’š ๐‘ฅ = 1, if ๐’‡ ๐‘ฅ โ‰ฅ ๐’š,
๐’‡๐’š ๐‘ฅ = 0, otherwise.
โ€ข Theorem:
๐‘‘๐‘–๐‘ ๐‘ก1 ๐’‡, ๐‘€ =
1
โˆซ0 ๐‘‘๐‘–๐‘ ๐‘ก0
๐’‡๐’š , ๐‘€ ๐‘‘๐’š
Proof sketch: slice and conquer
1) Closest monotone function with minimal ๐‘ณ๐Ÿ -norm is
unique (can be denoted as an operator ๐‘€๐’‡1 ).
2)
๐‘“ โˆ’๐‘”
1
=
1
โˆซ0
๐‘“๐’š โˆ’ ๐‘”๐’š ๐‘‘๐’š
3) ๐‘€๐’‡1 and ๐’‡๐’š commute: ๐‘€๐’‡1
1) ๐‘“ โˆ’ ๐‘€๐‘“1
๐‘‘๐‘–๐‘ ๐‘ก1 ๐‘“, ๐‘€ =
|๐ท|
1
โˆซ0
=
1
๐‘“๐’š โˆ’๐‘€(๐‘“
๐’š)
๐ท
๐‘‘๐’š
1
=
๐’š
= ๐‘€1 (๐’‡
๐’š)
2) โˆซ1 ๐‘“๐’š โˆ’ (๐‘€๐‘“1 )๐’š
0
1
=
๐ท
1
โˆซ0 ๐‘‘๐‘–๐‘ ๐‘ก0
๐‘“๐’š , ๐‘€ ๐‘‘๐’š
๐‘‘๐’š 3)
1
=
๐ฟ1 -Testers from Boolean Testers
Thm: A nonadaptive, 1-sided error ๐ฟ0 -test for monotonicity of
๐‘“: ๐ท โ†’ {0,1} is also an ๐ฟ1 -test for monotonicity of ๐‘“: ๐ท โ†’ [0,1].
Proof:
>
๐’‡(๐’š)
๐’‡(๐’™)
โ€ข A violation (๐‘ฅ, ๐‘ฆ):
โ€ข A nonadaptive, 1-sided error test queries a random set ๐‘„ โŠ† ๐ท
and rejects iff ๐‘„ contains a violation.
โ€ข If ๐‘“: ๐ท โ†’ [0,1] is monotone, ๐‘„ will not contain a violation.
โ€ข If ๐‘‘1 ๐‘“, ๐‘€ โ‰ฅ ๐œ€ then โˆƒ๐’•โˆ— : ๐‘‘0 ๐’‡(๐’•โˆ— ) , ๐‘€ โ‰ฅ ๐œบ
โ€ข W.p. โ‰ฅ 2/3, set ๐‘„ contains a violation (๐‘ฅ, ๐‘ฆ) for ๐’‡(๐’•โˆ— )
๐’‡(๐’•โˆ—) ๐‘ฅ = 1, ๐’‡(๐’•โˆ—) ๐‘ฆ = 0
โ‡“
๐’‡ ๐‘ฅ >๐’‡ ๐‘ฆ
โ€ข For Boolean functions ๐‘‚(1/๐œ–) sample is enough
Our Results: Testing Monotonicity
โ€ข Hypergrid (๐ท = ๐’ ๐’… )
๐ฟ0
Upper
bound
Lower
bound
โ€ข 2๐‘‚
๐’…
๐ log ๐’
๐‘‚
๐
๐ฟ1
๐’…
๐’…
๐‘‚
log
๐
๐
[Dodis et al. โ€™99,โ€ฆ,
Chakrabarti, Seshadhri โ€™13]
๐ log ๐’
ฮฉ
๐
[Dodis et al.โ€™99โ€ฆ,
Chakrabarti, Seshadhri โ€™13]
1
1
ฮฉ log
๐
๐
Non-adaptive 1-sided error
/๐œ– adaptive tester for Boolean functions
Testing Monotonicity of ๐’
๐’…
โ†’ {0,1}
โ€ข ๐‘’ ๐’Š = (0 โ€ฆ 1 โ€ฆ 0) = ๐’Š-th unit vector.
โ€ข For ๐’Š โˆˆ ๐’… , ๐›ผ โˆˆ ๐’ ๐’… where ๐›ผ๐’Š = 0 an axis-parallel line
along dimension ๐’Š : ๐›ผ + ๐‘ฅ๐’Š ๐‘’ ๐’Š ๐‘ฅ๐’Š โˆˆ [๐’]}
โ€ข ๐ฟ๐’,๐’… = set of all ๐’…๐’๐’…โˆ’1 axis-parallel lines
โ€ข Dimension reduction for ๐’‡: ๐’
๐ธโ„“โˆผ๐ฟ๐’,๐’… ๐‘‘๐‘–๐‘ ๐‘ก ๐’‡
โ€ข If ๐‘‘๐‘–๐‘ ๐‘ก ๐’‡|โ„“ , ๐‘€ โ‰ฅ ๐œน => ๐‘‚
,๐‘€
โ„“
1
๐œน
๐’…
โ†’ 0,1 [Dodis et al.โ€™99]:
๐‘‘๐‘–๐‘ ๐‘ก ๐’‡, ๐‘€
โ‰ฅ
2๐’…
-sample detects a violation
Testing Monotonicity on ๐’
โ€ข Dimension reduction for ๐’‡: ๐’
๐ธโ„“โˆผ๐ฟ๐’,๐’…
๐’…
๐’…
โ†’ {0,1}[Dodis et al.โ€™99]:
๐‘‘๐‘–๐‘ ๐‘ก ๐’‡, ๐‘€
๐‘‘๐‘–๐‘ ๐‘ก ๐’‡ , ๐‘€ โ‰ฅ
2๐’…
โ„“
โ€ข If ๐‘‘๐‘–๐‘ ๐‘ก ๐’‡|โ„“ , ๐‘€ โ‰ฅ ๐œน => ๐‘‚
1
๐œน
-sample can detect a violation
โ€ข โ€œInverse Markovโ€: For r. v. ๐‘ฟ โˆˆ 0,1 with E ๐— = ๐ and ๐‘ < 1
1 โˆ’ ๐
๐
๐
๐
Pr ๐‘ฟ โ‰ค ๐‘๐ โ‰ค
โ‡’ Pr ๐‘ฟ โ‰ค
โ‰ค1 โˆ’
โ‰ค1 โˆ’
1 โˆ’๐‘๐
2
2 โˆ’๐
2
โ€ข Pr ๐‘‘๐‘–๐‘ ๐‘ก ๐’‡|โ„“ , ๐‘€
๐‘‘๐‘–๐‘ ๐‘ก ๐’‡,๐‘€
๐‘‘๐‘–๐‘ ๐‘ก ๐’‡,๐‘€
๐’…๐Ÿ
โ‰ฅ
โ‰ฅ
โ‡’๐‘‚ ๐Ÿ
๐Ÿ’๐’…
๐Ÿ’๐’…
๐
๐’…
๐’…
2
log
via โ€œLevinโ€™s economical
๐
๐
-test
โ€ข [Dodis et al.] ๐‘‚
work
investment strategyโ€ (used in other papers for testing
connectedness of a graph, properties of images, etc.)
Testing Monotonicity on ๐’
๐’…
โ€ข โ€œDiscretized Inverse Markovโ€
1
2
For r. v. ๐‘ฟ โˆˆ 0,1 with E ๐— = ๐ โ‰ค and ๐’• = 3 log 1/๐
โˆƒ ๐’‹ โˆˆ ๐’• : Pr ๐‘ฟ โ‰ฅ 2โˆ’๐’‹
โ€ข For each ๐’Š โˆˆ [๐’•] pick ๐‘‚
๐‘‚
1
๐ 2๐’Š
2๐’‹ ๐
โ‰ฅ
4
samples of size ๐‘‚(2๐’Š ) => complexity
1
1
log
๐
๐
โ€ข For the right value j the test rejects with constant probability
โ€ข ๐ = ๐ธโ„“โˆผ๐ฟ๐’,๐’… ๐‘‘๐‘–๐‘ ๐‘ก ๐’‡|โ„“ , ๐‘€
โ‰ฅ
๐‘‘๐‘–๐‘ ๐‘ก ๐’‡,๐‘€
2๐’…
=> ๐‘‚
๐’…
๐’…
log
๐
๐
-test
Distance Approximation and Tolerant Testing
Approximating ๐‘ณ๐Ÿ -distance to monotonicity ±๐œน ๐’˜. ๐’‘. โ‰ฅ ๐Ÿ/๐Ÿ‘
๐‘“
๐’ โ†’ [0,1]
๐ฟ0
๐Ÿ
polylog ๐’ โ‹…
๐œน
๐ฟ1
๐‘ถ ๐Ÿ/๐œน
๐Ÿ
ฮ˜ ๐Ÿ
๐œน
[Saks Seshadhri 10]
โ€ข Sublinear algorithm for isotonic regression
๐Ÿ
โ€ข Improves ๐‘‚ ๐Ÿ adaptive distance approximation of [Fattal,Ronโ€™10] for
๐œน
Boolean functions
โ€ข Time complexity of tolerant ๐ฟ1 -testing for monotonicity is
๐œบ๐Ÿ
O
(๐œบ๐Ÿ โˆ’ ๐œบ๐Ÿ )๐Ÿ
โ€“ Better dependence than what follows from distance appoximation for
๐๐Ÿ โ‰ช 1
Distance Approximation ๐‘“: ๐‘› โ†’ 0,1
Theorem: with constant probability over the choice of
1
a random sample S of size O 2 :
๐›ฟ
๐‘‘๐‘–๐‘ ๐‘ก1 ๐‘“|๐‘บ , ๐‘€ โˆ’ ๐‘‘๐‘–๐‘ ๐‘ก1 ๐‘“, ๐‘€
โ€ข Implies an O
๐œ–2 โˆ’๐œ–1
3
โ€ข ๐‘‘๐‘–๐‘ ๐‘ก1 ๐’‡, ๐‘€ =
<๐›ฟ
1
๐œ–2 โˆ’๐œ–1 2
tolerant tester by setting ๐›ฟ =
1
โˆซ0 ๐‘‘๐‘–๐‘ ๐‘ก0
๐’‡๐’š , ๐‘€ ๐‘‘๐’š
โ€ข Suffices: โˆ€๐’š: ๐‘‘๐‘–๐‘ ๐‘ก0 ๐’‡๐’š |๐‘บ , ๐‘€ โˆ’ ๐‘‘๐‘–๐‘ ๐‘ก0 ๐’‡๐’š , ๐‘€
<๐›ฟ
โ€ข Improves previous ๐‘‚(1/๐›ฟ 2 ) algorithm [Fattal, Ronโ€™10]
Distance Approximation
For ๐’‡: [๐‘›] โ†’ 0,1 violation graph ๐‘ฎ๐’‡ ๐‘› , ๐ธ :
edge (๐‘ฅ1 , ๐‘ฅ2 ) if ๐‘ฅ1 โ‰ค ๐‘ฅ2 , ๐‘“ ๐‘ฅ1 = 1, ๐‘“ ๐‘ฅ2 = 0
MM(G) = maximum matching
VC(G) = minimum vertex cover
โ€ข ๐‘‘๐‘–๐‘ ๐‘ก0 ๐’‡, ๐‘€ =
๐‘ด๐‘ด ๐บ๐‘“
โ€ข ๐‘‘๐‘–๐‘ ๐‘ก0 ๐’‡|๐‘† , ๐‘€ =
|๐ท|
=
๐‘ด๐‘ด ๐บ๐‘“|๐‘†
๐‘†
๐‘ฝ๐‘ช ๐บ๐‘“
|๐ท|
=
[Fischer et al.โ€™02]
๐‘ฝ๐‘ช ๐บ๐‘“|๐‘†
|๐‘†|
๐‘‘๐‘–๐‘ ๐‘ก0 ๐’‡|๐‘บ , ๐‘€ โˆ’ ๐‘‘๐‘–๐‘ ๐‘ก0 ๐’‡, ๐‘€ < O
๐‘ฝ๐‘ช๐’‡ โˆฉ๐‘บ
Define: ๐’€ ๐‘บ =
๐‘บ
โ€ข ๐‘‘๐‘–๐‘ ๐‘ก0 ๐’‡|๐‘บ , ๐‘€ =
๐‘ฝ๐‘ช๐‘“|๐‘บ
|๐‘บ|
โ‰ค
๐‘ฝ๐‘ช๐‘“ โˆฉ๐‘บ
๐‘บ
= ๐’€(๐‘บ)
๐’€(๐‘บ) has hypergeometric distribution:
โ€ข ๐ธ๐’€ ๐‘บ
โ€ข ๐‘‰๐‘Ž๐‘Ÿ ๐‘Œ ๐‘บ
=
๐‘ฝ๐‘ช๐’‡
๐ท
โ‰ค
= ๐‘‘๐‘–๐‘ ๐‘ก0 ๐’‡, ๐‘€
๐‘บ ๐‘‰๐ถ๐‘“
๐ท ๐‘บ2
=
๐‘‘๐‘–๐‘ ๐‘ก0 ๐‘“,๐‘€
๐‘บ
โ‰ค
1
|๐‘บ|
1
๐‘บ
Experiments
โ€ข Data: Apple stock price data (2005-2015) from Google Finance
โ€ข Left: ๐ฟ1 -isotonic regression
โ€ข Right: multiplicative error vs. sample size
๐ฟ1 -Testers for Other Properties
Via combinatorial characterization of ๐ฟ1 -distance to the property
โ€ข Lipschitz property ๐’‡: ๐’ ๐’… โ†’ [0,1]:
๐’…
ฮ˜
๐œ–
Via (implicit) proper learning: approximate in ๐ฟ1 up to error ๐,
test approximation on a random ๐‘‚(1/๐œ–)-sample
โ€ข Convexity ๐’‡: ๐’
๐’…
โ†’ [0,1]:
๐’…
โˆ’2
O ๐
โ€ข Submodularity ๐’‡: 0,1
1
๐‘‚
2 ๐
+ ๐‘๐‘œ๐‘™๐‘ฆ
1
๐
+
1
๐
๐’…
โ†’ 0,1
(tight for ๐’… โ‰ค 2)
log ๐’… [Feldman, Vondrak 13, โ€ฆ]
๐ฟ๐‘ -Testing for Convex Optimization
โ€ข Theory: Convergence rates of gradient
descent methods depends on:
โ€“ Convexity / strong convexity constant
โ€“ Lipschitz constant of the derivative
โ€ข Practice:
โ€“ Q: How to pick learning rate in ML
packages?
โ€“ A: Set 0.01 and hope it converges fast
โ€ข Even non-tolerant ๐ฟ๐‘ -testers can be used to
sanity check convexity/Lipschitzness
A lot of open problems!
โ€ข ๐ฟ๐‘ -Testing Fourier sparsity [Backurs, Blais,
Kapralov, Onak, Y.]
โ€ข Eric Price: Hey, I can do this better!
Open Problems
โ€ข Our complexity for ๐ฟ๐‘ -testing convexity grows
exponentially with d
Is there an ๐ฟ๐‘ -testing algorithm for convexity with
subexponential dependence on the dimension?
โ€ข Only have tolerant monotonicity for ๐‘‘ = 1,2.
Tolerant testers for higher dimensions?