Transcript ppt
Alignment Which way is up? Coordinate Systems R = Rotation matrix transforming from local to global system Local to Global: r = Rq + r0,i r0 = Position of Tower origin r0,i = Translation vector from global to local origin w Local Plane Coordinate System q ri = Position, relative to tower origin, of plane origin v r u ri Plane i z r0,i z’ r0 y x Global Coordinate System Tower Origin y’ x’ Global to Local: q = R-1(r – r0,i) Coordinate Systems (another view) R = Rotation matrix transforming from local to global system r0 = Position of Tower origin r0,i = Translation vector from global to local origin ri = Position, relative to tower origin, of plane origin z y x Global Coordinate System Local to Global: r = Rq + r0,i Global to Local: q = R-1(r – r0,i) Transformations • Rotation R and translation r0,i are for a perfectly aligned detector – For Glast, we can take R = I (the identity matrix) • Vector to origin of the ith plane: – r0,i = r0 + ri – For Glast we have ri = (0,0,zi) • Corrections to perfect alignment will be small, above are modified by and incremental rotation R and translation r: – R → RR – r0 → r0 + r0 • These corrections give: – r0,I = r0 + r0 + Rri – r = RRq + r0 + r0 + Rri = R(Rq + ri) + r0 + r0 – q = (RR)-1(r - r0 - r0 - Rri) Incremental Rotation Matrix • Express the incremental rotation matrix as: R = Rx(α)Ry (β) Rz(γ ) where Rx(α), Ry(β) and Rz(γ ) are small rotations by α, β, γ about the x-axis, y-axis and z-axis, respectively • In General 1 Rx(α) = 0 0 0 cos α -sin α 0 sin α Rz(γ ) = cos α Cos γ -sin γ 0 Sin γ 0 0 cos γ 0 1 Ry(β) = cos β 0 sin β 0 1 0 -sin β 0 cos β Incremental Rotation Matrix (continued) • R = Multiplying it out, we get: cos β cos γ cos γ sin α sin β - cos α sin γ cos α cos γ sin β + sin α sin γ cos β sin γ cos α cos γ + sin α sin β sin γ -cos γ sin α + cos α sin β sin γ - sin β • cos β sin α cos α cos β Taking α, β and γ to be small (and ignoring terms above 1st order) gives: R = 1 -γ β γ 1 -α -β α 1 Local to Global Transformation • Start with: r = R(Rq + ri) + r0 + r0 • • • • • For Glast, R = I, the identity matrix R as given on the previous page ri = (0, 0, zi) since, for Glast, the silicon planes are parallel to x-y plane q = (ui, vi, 0) since the measurement is in the sense plane (no z coordinate) This gives: 1 -γ β x0 + x0 ui r= γ 1 -α -β α 1 vi zi + y0 + y0 z0 + z0 x = ui - γvi + βzi + x0 + x0 y = vi + γui - αzi + y0 + y0 z = zi - βui + αvi + z0 + z0 Global to Local Transformation • Start with: q = (RR)-1(r - r0 - r0 - Rri) • • • • For Glast, R = I, the identity matrix R as given on the previous page, to 1st order R-1 = RT Rri = (βzi, - αzi, zi) This gives (keeping terms to 1st order only): q= 1 γ -β x - x0 - x0 - βzi -γ 1 α y - y0 + y0 + αzi β -α 1 z - z0 + z0 - zi ui = x – x0 –x0 + γ (y – y0 – y0) – β (z – z0 – z0) vi = y – y0 – y0 – γ (x – x0 – x0) + α (z – z0 –z0) wi = z – z0 –z0 – β (x – x0 – x0) + α (y – y0 – y0) – zi