Transcript Slides

ME 475/675 Introduction to
Combustion
Lecture 17
Relationship between kinetics and equilibrium, Reaction mechanisms,
Steady state approximation
Announcements
β€’ HW 6 Due Monday, 10/5/15, X1, Ch 4 (16A, include the forward
and reverse of both reactions, π‘˜1𝑓 , π‘˜1π‘Ÿ , π‘˜2𝑓 , π‘˜2π‘Ÿ )
β€’ Return midterm Monday?
β€’ College of Engineering's Distinguished Lecture Series
β€’ Tesla Co-founder JB Straubel will speak about
β€’ Nevada’s clean energy future
β€’ Oct. 11, 2015 at 5 p.m., 4th Floor of the Joe Crowley Student Union
β€’ free and open to the public; reservations are required (sold out?).
β€’ www.unr.edu/tesla-lecture
Chapter 4 Chemical Kinetics (from last lecture)
β€’ Global (apparent) Reaction (this is what is observed)
β€’ 𝐹 + π‘Žπ‘‚π‘₯ β†’ π‘π‘ƒπ‘Ÿ
β€’ Made up of many intermediate steps that are not seen
β€’
𝑑𝐹
𝑑𝑑
= βˆ’π‘˜πΊ 𝑇 𝐹
𝑛
𝑂π‘₯
π‘š,
π‘˜πΊ 𝑇 global rate constant (black box)
β€’ Elementary bimolecular reaction (break one and form one bond):
β€’ 𝐴+𝐡 →𝐢+𝐷
𝑑𝐴
β€’
= βˆ’π‘˜π‘π‘–π‘šπ‘œπ‘™π‘’π‘ 𝐴 1 𝐡 1
𝑑𝑑
β€’ Using collision theory we predicted
β€’ π‘˜ 𝑇 =
1 2
2 8πœ‹π‘˜π΅ 𝑇
𝑝𝑁𝐴𝑉 𝜎𝐴𝐡
𝑒π‘₯𝑝
πœ‡
β€’ but 𝑝 and 𝐸𝐴 = ?
βˆ’
𝐸𝐴
𝑅𝑒 𝑇
(function of temperature alone, not pressure)
β€’ β€œSemi-empirical” three parameter form:
β€’ π‘˜ 𝑇 = 𝐴𝑇 𝑏 𝑒π‘₯𝑝 βˆ’
𝐸𝐴
𝑅𝑒 𝑇
, 𝐴, 𝑏 and 𝐸𝐴 values are tabulated pp. 112
Multistep Mechanisms Reaction Rates
β€’ A sequence of intermediate (elementary) reactions leading from overall-reactants
to overall-products
β€’ L steps, i = 1, 2,… L
β€’ N species, j = 1, 2,… N; some are intermediate (not in overall products for reactants)
β€’ Example (forward and reverse reactions)
β€’ R1: 𝐻2 + 𝑂2
β€’ R2: 𝐻 + 𝑂2
π‘˜πΉ1 ,π‘˜π‘…1
π‘˜πΉ2 ,π‘˜π‘…2
β€’ R3: 𝑂𝐻 + 𝐻2
π‘˜πΉ3 ,π‘˜π‘…3
β€’ R4: H + 𝑂2 + 𝑀
𝐻𝑂2 + 𝐻
𝑖=1
𝑂𝐻 + 𝑂
𝑖=2
𝐻2 𝑂 + 𝐻
𝑖=3
π‘˜πΉ4 ,π‘˜π‘…4
𝐻𝑂2 + 𝑀 𝑖 = 4
β€’ Number of steps: L = 4
β€’ Number of Species (j = 𝐻2 , 𝑂2 , 𝐻𝑂2 , 𝐻, 𝑂𝐻, 𝑂, 𝐻2 𝑂, 𝑀): N = 8
β€’ 8 time-dependent unknowns molar concentration: 𝑗 𝑑
β€’ Need 8 equations (constraints)
Species net reaction rates
β€’j=1
β€’
𝑑 𝑂2
𝑑𝑑
= π‘˜π‘…1 𝐻𝑂2 𝐻 + π‘˜π‘…2 𝑂𝐻 𝑂 + π‘˜πΉ3 𝑂𝐻 𝐻2
βˆ’π‘˜πΉ1 𝐻2 𝑂2 βˆ’ π‘˜πΉ2 𝐻 𝑂2 βˆ’ π‘˜πΉ4 𝐻 𝑂2 𝑀
β€’j=2
β€’
𝑑𝐻
𝑑𝑑
= π‘˜πΉ1 𝐻2 𝑂2 + π‘˜π‘…2 𝑂𝐻 𝑂 + π‘˜πΉ3 𝑂𝐻 𝐻2 + π‘˜π‘…4 𝐻𝑂2 𝑀
βˆ’π‘˜π‘…1 𝐻𝑂2 𝐻 βˆ’ π‘˜πΉ2 𝐻 𝑂2 βˆ’ π‘˜π‘…3 𝐻2 𝑂 𝐻 βˆ’ π‘˜πΉ4 𝐻 𝑂2 𝑀
β€’ i = 3, 4, …8
‒…
β€’ Book describes compact notation
What happens at equilibrium?
β€’ A general bimolecular reaction (not necessarily elementary)
β€’ π‘Žπ΄ + 𝑏𝐡
π‘˜π‘“
π‘˜π‘Ÿ
𝑐𝐢 + 𝑑𝐷
β€’ Consumption – Generation of A
β€’
𝑑𝐴
𝑑𝑑
= π‘Ž βˆ’π‘˜π‘“ 𝐴
β€’ At equilibrium
β€’ π‘˜π‘“ 𝐴
β€’
π‘˜π‘“ 𝑇
π‘˜π‘Ÿ 𝑇
π‘Ž
𝐡
𝐡
𝑑𝐴
𝑑𝑑
β€’ 𝐾𝐢 𝑇 =
π‘˜π‘Ÿ 𝑇
𝐡
𝑏
+ π‘˜π‘Ÿ 𝐢
𝑐
𝐷
𝑑
= 0, so
= π‘˜π‘Ÿ 𝐢
= 𝐾𝐢 𝑇 =
π‘˜π‘“ 𝑇
π‘Ž
𝑐
𝐷
𝑑
𝐢 𝑐𝐷𝑑
π΄π‘Žπ΅π‘
= Rate Coefficient based on molar concentrations
β€’ Looks like the Equilibrium Constant based on partial pressures 𝐾𝑃 𝑇 from Chapter 2
Relationship between Rate Coefficients and Equilibrium
Constant (Chapter 2)
β€’ π‘Žπ΄ + 𝑏𝐡
π‘˜π‘“
π‘˜π‘Ÿ
𝑐𝐢 + 𝑑𝐷
𝑃𝐢 𝑐 𝑃𝐷 𝑑
π‘ƒπ‘œ
π‘ƒπ‘œ
𝑃𝐴 π‘Ž 𝑃𝐡 𝑏
π‘œ
π‘œ
𝑃𝐢 𝑃𝑐 𝑃𝐷 𝑃𝑑
π‘ƒπ‘œ
π‘ƒπ‘œ
π‘ƒπ‘œ
𝑃𝐴 π‘Ž 𝑃𝐡 𝑏 𝑅𝑒 𝑇
π‘ƒπ‘œ
π‘ƒπ‘œ
β€’ Equilibrium Constant (based on partial pressures) : 𝐾𝑃 𝑇 =
β€’ Rate constant: 𝐾𝐢 𝑇 =
β€’ Using 𝑖 =
𝑁𝑖
𝑉
β€’ 𝐾𝐢 𝑇 = 𝐾𝑃 𝑇
=
π‘˜πΉ 𝑇
π‘˜π‘… 𝑇
=
𝑃𝑖
𝑅𝑒 𝑇
π‘ƒπ‘œ 𝑐+π‘‘βˆ’(π‘Ž+𝑏)
𝑅𝑒 𝑇
𝑅𝑒 𝑇 𝑐+π‘‘βˆ’(π‘Ž+𝑏)
π‘ƒπ‘œ
𝐢 𝑐𝐷𝑑
π΄π‘Žπ΅π‘
=
𝑃𝐢 𝑐 𝑃𝐷 𝑑
𝑅𝑒 𝑇
𝑅𝑒 𝑇
𝑃𝐴 π‘Ž 𝑃𝐡 𝑏
𝑅𝑒 𝑇
𝑅𝑒 𝑇
=
, or
β€’ 𝐾𝑃 𝑇 = 𝐾𝐢 𝑇
β€’ Note: If 𝑁𝑅 = π‘Ž + 𝑏 = 𝑐 + 𝑑 = 𝑁𝑃 , then 𝐾𝑃 𝑇 = 𝐾𝐢 𝑇
β€’ So if we know π‘˜π‘“ then we can find π‘˜π‘Ÿ !
𝑐+π‘‘βˆ’(π‘Ž+𝑏)
Example 4.2 (page 120, turn in next time)
β€’ In their survey of experimental determinations of rate coefficients for
the N-H-O system, Nanson and Salimian [reference 10 in book]
recommend the following rate coefficient for the reaction
β€’ 𝑁𝑂 + 𝑂 β†’ 𝑁 + 𝑂2 .
β€’ π‘˜π‘“ = 3.80 βˆ—
βˆ’20,820
109 𝑇 1.0 𝑒π‘₯𝑝
𝑇
=
π‘π‘š3
π‘”π‘šπ‘œπ‘™βˆ—π‘ 
β€’ These coefficients generally use [cgs] (centimeter, gram, seconds)] units, not [mks]
β€’ Determine the rate coefficient at 2300 K for the reverse reaction, i.e.
β€’ 𝑁 + 𝑂2 β†’ 𝑁𝑂 + 𝑂
Reaction Mechanisms (and approximations)
β€’ Describes concepts used to find global (apparent) rate
β€’ Steady State Approximation
β€’ Slow creation and rapid consumption of radicals cause them to reach steady-state quickly
β€’ Example: Zelovich two-step system
π‘˜1
β€’ 𝑂 + 𝑁2 β†’ 𝑁𝑂 + 𝑁
β€’ This is a relatively β€œslow” reaction, but N is highly reactive and is consumed β€œas soon as” it is created
π‘˜2
β€’ 𝑁 + 𝑂2 β†’ 𝑁𝑂 + 𝑂 (this is the reverse of reaction in last example)
β€’ Very fast consumption of N
β€’ Production – Consumption of N
β€’
𝑑𝑁
𝑑𝑑
𝑁
β€’ Since 𝑁 consumption is very fast, 𝑁 reaches steady-state almost right away
β€’ 𝑁
𝑑
= π‘˜1 𝑂 𝑁2 βˆ’ π‘˜2 𝑁 𝑂2
𝑆𝑆
=
π‘˜1 𝑂 𝑁2
π‘˜2 𝑂2
𝑑𝑁
𝑑𝑑
β‰ˆ0
[algebraic equation (instantaneous), not differential (dynamic)]
β€’ This molar concentration is small and changes almost immediately when the other concentrations change
β€’
𝑑 𝑁 𝑆𝑆
𝑑𝑑
𝑑 π‘˜1 𝑂 𝑁2
π‘˜2 𝑂2
= 𝑑𝑑
Uni-molecular Reaction
β€’ Apparent (global)
β€’ 𝐴 β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘;
β€’ Find
𝑑 π‘ƒπ‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ 
𝑑𝑑
π‘˜π‘Žπ‘π‘
= π‘˜π‘Žπ‘π‘ 𝐴
β€’ Measurements show that, for uni-molecular reactions
β€’ At high pressures reaction rate is not a function of pressure
β€’ At low pressure, reaction rate increases with pressure
β€’ This can be explained using a β€œthree-step” mechanism
π‘˜π‘’
β€’ 𝐴 + 𝑀 β†’ π΄βˆ— + 𝑀 (π΄βˆ— is an energized state of 𝐴 and highly reactive)
β€’
π΄βˆ—
+𝑀
π‘˜
βˆ— 𝑒𝑛𝑖
β€’ 𝐴
π‘˜π‘‘π‘’
𝐴 + 𝑀 (De-energization of A)
π‘ƒπ‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ 
β€’ π΄βˆ— is assumed to be very reactive and reach steady state conditions quickly
𝑃
Product production rate
𝑑 π‘ƒπ‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ 
𝑑𝑑
π΄βˆ—
β€’
= π‘˜π‘’π‘›π‘–
β€’ Molecular Balance for π΄βˆ—
β€’
𝑑 π΄βˆ—
𝑑𝑑
βˆ—
β€’ 𝐴
β€’
β€’
𝑆𝑆
β‰ˆ
π‘˜π‘’ 𝐴 𝑀
π‘˜π‘‘π‘’ 𝑀 + π‘˜π‘’
π‘˜π‘’π‘›π‘– π‘˜π‘’ 𝑀
β€’ Recall 𝑀 =
𝑁𝑀
𝑉
= πœ’π‘€
𝑁
𝑉
β€’ π‘˜π‘Žπ‘π‘ =
𝐴 = π‘˜π‘Žπ‘π‘ 𝐴
= πœ’π‘€
𝑃
β€’ For 𝑃
need π΄βˆ— )
= π‘˜π‘’ 𝐴 𝑀 βˆ’ π‘˜π‘‘π‘’ π΄βˆ— 𝑀 βˆ’ π‘˜π‘’π‘›π‘– π΄βˆ— β‰ˆ 0 (since π΄βˆ— is consumed as fast as it is produced)
𝑑 π‘ƒπ‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ 
=
𝑑𝑑
π‘˜π‘‘π‘’ 𝑀 +π‘˜π‘’π‘›π‘–
π‘˜
π‘˜ 𝑀
π‘˜π‘Žπ‘π‘ = 𝑒𝑛𝑖 𝑒
π‘˜π‘‘π‘’ 𝑀 +π‘˜π‘’π‘›π‘–
β€’ For 𝑃
π‘˜π‘’π‘›π‘–
βˆ—
(𝐴
π‘ƒπ‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ ,
𝑃
𝑅𝑒 𝑇
π‘˜π‘Žπ‘π‘
𝑃
π‘˜π‘’π‘›π‘– π‘˜π‘’ πœ’π‘€ 𝑅 𝑇
𝑒
𝑃
π‘˜π‘‘π‘’ πœ’π‘€ 𝑅 𝑇+π‘˜π‘’π‘›π‘–
𝑒
π‘˜π‘’π‘›π‘– 𝑅𝑒 𝑇
≫
, π‘˜π‘Žπ‘π‘
π‘˜π‘‘π‘’ πœ’π‘€
π‘˜
𝑅 𝑇
β‰ͺ 𝑒𝑛𝑖 𝑒 , π‘˜π‘Žπ‘π‘
π‘˜π‘‘π‘’ πœ’π‘€
β†’
β†’
π‘˜π‘’π‘›π‘– π‘˜π‘’
π‘˜π‘‘π‘’
π‘˜π‘’ πœ’π‘€ 𝑃
𝑅𝑒 𝑇
β‰  𝑓𝑛 𝑃 (consistent with observations)
= π‘˜π‘’ 𝑀 ~𝑃1 (also consistent with observations)
End 2015
Hypothetical Chain reactions (example)
β€’ Globally: 𝐴2 + 𝐡2 β†’ 2𝐴𝐡 (𝐴 and 𝐡 are general atoms)
β€’
𝑑 𝐴𝐡
𝑑𝑑
= 2π‘˜π‘Žπ‘π‘ 𝐴2 𝐡2
β€’ Proposed intermediate steps
β€’ Slow creation of free radicals 𝐴 (and 𝐡)
π‘˜1
β€’ 𝐴2 + 𝑀 β†’ 𝐴 + 𝐴 + 𝑀
β€’ Fast consumption of 𝐴 and 𝐡 (neglect reverse because 𝐴 and 𝐡 are small)
π‘˜2
β€’ 𝐴 + 𝐡2 β†’ 𝐴𝐡 + 𝐡
π‘˜3
β€’ 𝐡 + 𝐴2 β†’ 𝐴𝐡 + 𝐴
β€’ De-energization ter-molecular reaction is slow
π‘˜4
β€’ 𝐴 + 𝐡 + 𝑀 β†’ 𝐴𝐡 + 𝑀
β€’ Assume π‘˜2 and π‘˜3 are much greater than π‘˜1 and π‘˜4
Production - Consumption equations
β€’ Reactants
β€’
β€’
𝑑 𝐴2
𝑑𝑑
𝑑 𝐡2
𝑑𝑑
= 0 βˆ’ π‘˜1 𝐴2 𝑀 βˆ’ π‘˜3 𝐡 𝐴2
= 0 βˆ’ π‘˜1 𝐴 𝐡2
β€’ Products
β€’
𝑑 𝐴𝐡
𝑑𝑑
= π‘˜2 𝐴 𝐡2 + π‘˜3 𝐡 𝐴2 + π‘˜4 𝐴 𝐡 𝑀
β€’ Intermediates (fast)
β€’
β€’
𝑑𝐴
𝑑𝑑
𝑑𝐡
𝑑𝑑
= 2π‘˜1 𝐴2 𝑀 βˆ’ π‘˜2 𝐴 𝐡2 + π‘˜3 𝐡 𝐴2 βˆ’ π‘˜4 𝐴 𝐡 𝑀 β‰ˆ 0
= π‘˜2 𝐴 𝐡2 βˆ’ π‘˜3 𝐡 𝐴2 βˆ’ π‘˜4 𝐴 𝐡 𝑀 β‰ˆ 0
β€’ 𝐡 =
π‘˜2 𝐴 𝐡2
π‘˜3 𝐴2 βˆ’π‘˜4 𝐴 𝑀
β€’ 2π‘˜1 𝐴2 𝑀 βˆ’ π‘˜2 𝐴 𝐡2 +
β€’ 2π‘˜1 𝐴2 𝑀 βˆ’ π‘˜2 𝐴 𝐡2
π‘˜3 𝐴2 βˆ’π‘˜4 𝐴 𝑀 π‘˜2 𝐴 𝐡2
π‘˜3 𝐴2 βˆ’π‘˜4 𝐴 𝑀
π‘˜3 𝐴2 βˆ’ π‘˜4 𝐴 𝑀
=0
+ π‘˜3 𝐴2 βˆ’ π‘˜4 𝐴 𝑀 π‘˜2 𝐴 𝐡2 = 0