Transcript slides
Independence Fault Collapsing Alok S. Doshi (Speaker) Vishwani D. Agrawal Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849, USA Aug.13, 2005 VDAT05: Doshi and Agrawal 1 Outline • Motivation • Fault Classification • Independence Graph and Matrix • Independence Fault Collapsing • Concurrent Test Generation • Conclusions and Future Work Aug.13, 2005 VDAT05: Doshi and Agrawal 2 Motivation a x b c d y e C17 - ISCAS85 Benchmark Circuit ATPG Hitec1 Fastest2 Gentest3 Tests 10 7 7 Minimum 4 T. M. Niermann and J. H. Patel, “HITEC: A Test Generation Package for Sequential Circuits,” Proc. European Design Automation Conference, Feb. 1991, pp. 214-218. 2 T. P. Kelsey, K. K. Saluja, and S. Y. Lee, “An Efficient Algorithm for Sequential Circuit Test Generation,” IEEE Trans. Computers, vol. 42, no. 11, pp. 1361-1371, Nov. 1993. 3 W. T. Cheng and T. J. Chakraborty, “Gentest: An Automatic Test Generation System for Sequential Circuits,” Computer, vol. 22, no. 4, pp. 43–49, April 1989. 1 Aug.13, 2005 VDAT05: Doshi and Agrawal 3 Fault Classification T(F1) T(F1) = T(F2) T(F2) (a) F1 and F2 are equivalent. T(F1) T(F2) (c) F1 and F2 are independent. Aug.13, 2005 (b) F1 dominates F2. T(F1) T(F2) (d) F1 and F2 are concurrently testable. VDAT05: Doshi and Agrawal 4 Definitions Independent Faults4: Two faults are independent if and only if they cannot be detected by the same test vector. Concurrently-Testable Faults: Two faults that neither have a dominance relationship nor are independent, are defined as concurrently-testable faults. 4 S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the role of Independent Fault Sets in the Generation of Minimal Test Sets,” in Proc. International Test Conf., 1987, pp. 1100-1107. Aug.13, 2005 VDAT05: Doshi and Agrawal 5 Structural Independences sa1 sa0 sa0 Aug.13, 2005 sa1 sa1 sa0 sa1 sa1 sa0 sa1 sa1 sa0 sa0 sa1 sa1 sa0 sa1 sa0 sa0 sa0 VDAT05: Doshi and Agrawal 6 Implied Independences Equivalence implied independence: If two faults are equivalent then all faults that are independent of one fault are also independent of the other fault. Dominance implied independence: If one fault dominates a second fault then all faults that are independent of the first fault are also independent of the second fault. Aug.13, 2005 VDAT05: Doshi and Agrawal 7 Functional Independences Redundant faults Fj are independent of Fi Redundant faults Fj are independent of Fi CUT C0 CUT C0 Primary Outputs Primary Output Primary Inputs CUT C0 Primary Inputs CUT(Fi) Ci CUT(Fi) Ci (a) Finding all faults independent of Fi in a single output circuit. Aug.13, 2005 CUT C0 (b) Finding all faults independent of Fi in a multiple output circuit. VDAT05: Doshi and Agrawal 8 Example Circuit 2-1 a e x 5-1 1-1 b c d 4-1 3-1 7-1 6-1 8-1 11-1 9-1 y 10-1 C17 - ISCAS85 Benchmark Circuit 5 R. K. K. R. Sandireddy and V. D. Agrawal, “Diagnostic and Detection Fault Collapsing for Multiple Output Circuits," in Proc. Design, Automation and Test in Europe (DATE) Conf., Mar. 2005, pp. 1014 - 1019. Aug.13, 2005 VDAT05: Doshi and Agrawal 9 Independence Matrix and Graph F 1 2 3 4 5 6 7 8 9 10 11 1 0 1 1 1 1 1 0 0 1 0 1 2 1 0 0 1 1 0 1 0 0 0 1 3 1 0 0 0 1 1 1 1 0 1 1 4 1 1 0 0 1 0 1 0 0 0 1 5 1 1 1 1 0 0 0 1 1 1 0 6 1 0 1 0 0 0 1 1 1 0 0 7 0 1 1 1 0 1 0 1 1 0 0 8 0 0 1 0 1 1 1 0 1 1 1 9 1 0 0 0 1 1 1 1 0 1 1 10 0 0 1 0 1 0 0 1 1 0 1 11 1 1 1 1 0 0 0 1 1 1 0 Aug.13, 2005 1 2 3 4 5 11 6 VDAT05: Doshi and Agrawal 7 8 9 10 10 Clique A clique is defined as a fully-connected subgraph, i.e., a subgraph in which every node is connected to every other node. A lower bound on the number of tests required to cover all faults of an irredundant combinational circuit is given by the size of the largest clique of the independence graph. Aug.13, 2005 VDAT05: Doshi and Agrawal 11 Cliques 1 2 3 4 5 1 2 3 4 5 11 6 Aug.13, 2005 7 8 9 10 11 6 VDAT05: Doshi and Agrawal 7 8 9 10 12 Degree of Independence Degree of Independence: This is the number of edges attached to the fault node and is computed for the ith fault by adding all the elements of either the ith row or the ith column of the independence matrix. N N j=1 i=1 DI (ith fault) = Σ xij = Σ xji Aug.13, 2005 VDAT05: Doshi and Agrawal 13 Degree of Independence Fault 1 2 3 4 5 6 7 8 9 10 11 DI 1 0 1 1 1 1 1 0 0 1 0 1 7 2 1 0 0 1 1 0 1 0 0 0 1 5 3 1 0 0 0 1 1 1 1 0 1 1 7 4 1 1 0 0 1 0 1 0 0 0 1 5 5 1 1 1 1 0 0 0 1 1 1 0 7 6 1 0 1 0 0 0 1 1 1 0 0 5 7 0 1 1 1 0 1 0 1 1 0 0 6 8 0 0 1 0 1 1 1 0 1 1 1 7 9 1 0 0 0 1 1 1 1 0 1 1 7 10 0 0 1 0 1 0 0 1 1 0 1 5 11 1 1 1 1 0 0 0 1 1 1 0 7 DI 7 5 7 5 7 5 6 7 7 5 7 Aug.13, 2005 VDAT05: Doshi and Agrawal 14 Similarity Metric Similarity Metric: This is a measure defined for a pair of faults that determines how similar they are in their independence and concurrent-testability with respect to the entire fault set of the circuit. N SIM (fault-i, fault-j) = Nxij + (1-xij) Σ |xik-xjk| k=1 Aug.13, 2005 VDAT05: Doshi and Agrawal 15 Similarity Metrics Fault 1 2 3 4 5 6 7 8 9 10 11 1 0 11 11 11 11 11 3 4 11 4 11 2 11 0 4 11 11 6 11 6 4 6 11 3 11 4 0 4 11 11 11 11 0 11 11 4 11 11 4 0 11 6 11 6 4 6 11 5 11 11 11 11 0 4 3 11 11 11 0 6 11 6 11 6 4 0 11 11 11 4 4 7 3 11 11 11 3 11 0 11 11 5 3 8 4 6 11 6 11 11 11 0 11 11 11 9 11 4 0 4 11 11 11 11 0 11 11 10 4 6 11 6 11 4 5 11 11 0 11 11 11 11 11 11 0 4 3 11 11 11 0 Aug.13, 2005 VDAT05: Doshi and Agrawal 16 Independence Collapsing Fault 1 3 5 8 9 11 7 2 4 6 10 DI 1 0 1 1 0 1 1 0 1 1 1 0 7 3 1 0 1 1 0 1 1 0 0 1 1 7 5 1 1 0 1 1 0 0 1 1 0 1 7 8 0 1 1 0 1 1 1 0 0 1 1 7 9 1 0 1 1 0 1 1 0 0 1 1 7 11 1 1 0 1 1 0 0 1 1 0 1 7 7 0 1 0 1 1 0 0 1 1 1 0 6 2 1 0 1 0 0 1 1 0 1 0 0 5 4 1 0 1 0 0 1 1 1 0 0 0 5 6 1 1 0 1 1 0 1 0 0 0 0 5 10 0 1 1 1 1 1 0 0 0 0 0 5 DI 7 7 7 7 7 7 6 5 5 5 5 Aug.13, 2005 VDAT05: Doshi and Agrawal 17 Independence Collapsing F 1 3 5 8 9 11 7 2 4 6 10 1 0 11 11 4 11 11 3 11 11 11 4 3 11 0 11 11 0 11 11 4 4 11 11 5 11 11 0 11 11 0 3 11 11 4 11 8 4 11 11 0 11 11 11 6 6 11 11 9 11 0 11 11 0 11 11 4 4 11 11 11 11 11 0 11 11 0 3 11 11 4 11 7 3 11 3 11 11 3 0 11 11 11 5 2 11 4 11 6 4 11 11 0 11 6 6 4 11 4 11 6 4 11 11 11 0 6 6 6 11 11 4 11 11 4 11 6 6 0 4 10 4 11 11 11 11 11 5 6 6 4 0 11 4 11 03 1,8 1 5,11,7 5,11 5 3,9,2 3,9 3 4,6,10 4,6 4 11 0 4 6 Similarity index for fault F for each existing node i: Max. SIM (F, kth fault of node i) where k = 1…..K, and K is number of faults in node i. Aug.13, 2005 VDAT05: Doshi and Agrawal 18 Concurrent test generation for C17 a 2-1 e x 5-1 1-1 b c d 4-1 3-1 7-1 6-1 11-1 9-1 10-1 y Fault Targets (a b c d e) 8-1 Aug.13, 2005 Test VDAT05: Doshi and Agrawal 1,8 10010 3,9,2 01111 5,11,7 X1010 4,6,10 10101 19 Results (ALU – 74181) Node no. Total 1 2 3 4 5 6 7 8 9 10 11 12 Aug.13, 2005 5 3 8 3 5 6 7 14 8 8 8 9 Number of faults Targeted Detected from this other node nodes 5 5 6 3 3 2 7 7 3 3 3 3 3 3 4 6 6 2 4 4 3 11 11 1 6 5 1 4 3 2 3 3 1 2 2 1 VDAT05: Doshi and Agrawal Test vectors Cumulative coverage 11 16 26 32 39 47 54 66 72 77 81 84 01001111010001 01001111110101 01011101000001 101x0101010000 10100101011000 11111000001001 11100000100000 11100110101011 10010100110101 1x101011101100 01010000101100 1x011110001100 20 Conclusions and Future Work • • • • Faults are reclassified into four classes: • • • • Equivalent Dominant Independent Concurrently-testable (also called compatible in the literature) A new fault collapsing algorithm based on Independent Faults is introduced. This algorithm frequently collapses the graph into a minimal clique. This work motivates the need for ATPG algorithms for concurrent fault targets. The problem of completely determining all edges of the independence graph is complex. The algorithm needs to be extended for incompletely – specified independence graph. Aug.13, 2005 VDAT05: Doshi and Agrawal 21 Thank You! Aug.13, 2005 VDAT05: Doshi and Agrawal 22