Barbe_columbus_2010.ppt

Download Report

Transcript Barbe_columbus_2010.ppt

Ozone : First observation of the 2n1+3n2+n3 band
A.Barbe, M.-R. De Backer-Barilly, X.Thomas,
P.Von Der Heyden,Vl.G. Tyuterev
Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089,
Université de Reims, FRANCE
HAMILTONIAN
Hamiltonian
matrix
Diagonal block
 
1
1
1


H VV  E VV   A  B  C  J z2  B  C  J 2  B  C J xy2  K J z4  JK J z2 J 2  J J 2
2
2
2



J

J
 
  K J z2 , J xy2  2 J J xy2 J 2  H K J z6  H KJ J z4 J 2  H JK J z2 J 2
 hKJ
where
2
z
, J xy2
2
 
 2 hJ J xy2 J 2
2
A, B  AB  BA
2
 
 H J J2
3

 hK J z4 , J xy2
2

 LK J z8
J xy2  J x2  J y2
and
Extradiagonal blocks

VV '
H Coriolis
 C001 J   J    C011 J  J z  1 / 2   J z  1 / 2 J    C021 J  J z  1 / 2   J z  1 / 2  J 



2
 C 201 J 2 J   J    C003 J   J   C031 J  J z  1 / 2   J z  1 / 2  J 
3
3
3
3
 C 211 J 2 J  J z  1 / 2   J z  1 / 2 J    ...
2


1
where J   J x  J y
i


'
2
2
2
2
2
2
2
2
2
H VV
Anharm  A000  A020 J  A002 J z  A200 J   J    A202 J  J z  1  J z  1 J   A220 J J   J    ...
2
2
Assignments :
Assignments :
vibration : predictions from Vl. G. Tyuterev – keep the usual label v1 v2 v3.
 vibration : predictions from Vl. G. Tyuterev – keep the usual label v v2 v3 .
rotation : use of ASSIGN program (Chichery A.) based 1 on
Ground State Combination Differencies
 rotation : use of ASSIGN program (Chichery A.) based on Ground State Combination Differencies (GSCD) - J Ka Kc
(GSCD)
- J Ka
Kc
 calculation
of energy
levels, transitions, and intensities : GIP program. (S. A. Taskhun)
calculation of energy levels, transitions, and intensities : GIP program. (S. A. Taskhun)
Line intensities
The linestrengths are calculated using the following effective transition
moment operators :
For A-Type band : v’3-v3 odd
( v1v2 v3 )( v'1 v' 2 v'3 )
~Z  d 1 Z  d 2  Z , J 2  d 3  Z , J Z2  d 4
1
 X ,iJ Y  iY , J X 
2
1
1
 d 5  X ,J X , J Z   i Y ,iJ Y , J Z   d 6  X ,iJ Y   i Y , J X 
2
2
2

 d7  X ,J X , J Z   i Y ,iJ Y , J Z   d 8  Z , J XY
Where
A, B  AB  BA
vv'
and d i  d i
REIMS : Fourier Transform
Spectrometer
Working in stepping mode, 3
meters path difference.
Recent experimental improvements:
Use of two detectors
Adaptation to large white cell ( 1.5 km pathlengh )
MultiFiT (MFT)
Use of « » software (J.-J. Plateaux et L. Régalia-Jarlot) (GSMA)
For simultaneous fit of various spectra recorded at different pressures
Experimental parameters are obtained for each of the observed transition: position,
intensity, broadening and shift coefficients
Ozone generation at 77 K : complete conversion O2 → O3
Statistics for the rovibrational transitions included in the fit
Vibrational state
(231)
(302)
EVV
5159.32
5172.00
J max
34
31
Ka max
11
11
Number of
transitions
426
271
Total: 697
Number of levels
253
204
Total: 457
rms (103 cm-1)
2.09
2.32
Coupling 231-302
Without resonance
With resonance
5430.322
5430.311
5430.233
242 (302)
+0.011 cm-1
-0.011 cm-1
5430.222
Observed transitions
(302) 242 -- (001) 252 = 4100.844 cm-1
(231) 243 -- (000) 253 = 5128.553 cm-1
243 (231)
Spectroscopic parameters of the (231) and (302) vibrational
states of the 16O3 (in cm-1)
Parameters
(231)
(302)
EVV
5159.32710(32)
5172.70038 (41)
A-(B+C)/2
3.2193171 (16)
3.0253635 (19)
(B+C)/2
0.40254028 (13)
0.40233491 (22)
(B-C)/2
101
0.2669043 (25)
0.2550681(43)
DK
103
0.313229 (15)
0.207606 (17)
DJK
105
-0.20121(21)
-0.31850 (35)
DJ
106
0.52505(12)
0.40017 (35)
δJ
106
0.11052 (13)
0.11645(27)
δK
105
g
0.2497(57)
C 001  0.714 9 (55)  10 3
Other terms appearing in the Hamiltonian were fixed to their ground state value.
g: fixed to the ground state value
Integrated band intensities, Sv, in (cm/molecule at 296K) and
Parameters of the effective transition moment operator (in Debye).
Operator
Parameters
Value
Number of
transitions
(J max, Ka
max)
rms a
deviation
(%)
2n1+3n2+n3 A-type (Sv = 1.1810-23cm/molecule)
Z
 Z ,J 2 
 Z ,J Z2 
d1 (×104)
0.78497 (81)
d2 (×108)
-0.5573(26)
d3 (×107)
0.908 (12)
261
(32, 5)
20.7
17 (29, 7)
10.3
3n1+2n3-n3 A-type (Sv =5.47 10-23cm/molecule)
Z
aNote
d1 (×102)
0.24067 (28)
: The rms deviation applies to the quantity (Iobs-Icalc)/Iobs.
1
(b)
Transmission
2n 1+2n 3
0
0.9
n 1+3n 2+n 3
a) FTS observed spectrum
b) Synthetic spectra of
previously assigned n1+3n2+n3
and 2n1+2n3 bands
0.8
(a)
0.7
0.6
4060
5
4080
4100
4120
4140
4160
4180
4200
4220
a) /b), with slope correction
showing the 3n1+2n3-n3 band as
residual
Obs-.Calc. (%)
0
-5
*
*
*
*
* *
*
4080
*
*
*
* : H2O lines
*
-20
4060
*
*
(302)-(001)
*
*
*
*
-10
-15
*
4100
4120
4140
4160
4180
4200
4220
Conclusion
•
The 2n1+3n2+n3 band has been observed with the Reims FTS . This very weak band has been
analysed , using usual effective hamiltonian and dipole moment operators.
•
426 transitions have been assigned for this band ,with J max= 34 and Ka max= 11.
•
These transitions are reproduced with an rms of 2.0910-3 cm-1
•
Using single state models for both states (231) and (302) in our analyse, we found that only
one level 243 (231) was slightly perturbed (shift= -0.011 cm-1). This perturbation has been
identified , to a coriolis resonance with the 242 (302) level. Adding a very small Coriolis
resonance parametre , does not change single states parameters , within statistical errors.
•
It is particularly insteresting to note that this perturbation was noticed in the reference: MR. De-Backer, A.Barbe and Vl.G.Tyuterev, «First observation of the 3n1+2n2-n3»,
Molecular Physics, 102, pp 1707-1716 ( 2004) , and its value of + 0.011 cm-1 fully confirms the
validity of both analyses.