下載/瀏覽Download

Download Report

Transcript 下載/瀏覽Download

沈祖望Tsu-Wang Shen1 劉芳芷Hsin-Fang Li1 陳紹祖William Shao-Tsu
Chen2
1 慈濟大學醫學資訊學系 Department of Medical Informatics, Tzu Chi
University
2 花蓮慈濟醫院身心醫學科 Department of Psychiatry, Buddhist TzuChi General Hospital
1
Presenter: Tzu-Yu Huang
Advisor: Dr. Yen-Ting Chen
Date: 12.29.2010

An artificial neural network (ANN)
◦
◦
◦
◦
2
Artificial intelligence
Mathematical model
Learning system
Computer-aid diagnosis
An artificial neural network (ANN):類神經網路

Back propagation neural network (BPNN)
◦ Supervised neural network
XH
ih
W
a
1
WhjHY
3
4
1
b
c
3
L
d
1
2
3
4
5
 f
Output layer
4
3
L
k
2
Input layer
 f
2
k

H
h
e
 Yj
Hidden layer
Back propagation neural network (BPNN):倒傳遞類神經網路

Back propagation neural network (BPNN)
◦ Input-to-hidden
 Weight
nethH   h WihXH X i   hH

H h  f net hH

X i x W XH
ih
+
 f
 hH
 Activation function : sigmoid
1
f x  
1  e  ax 
Blue a=2
Red a=1
Green a=0.5
4
k
L

Back propagation neural network (BPNN)
◦ Hidden-to-output
 Weight
HY
Y




net
h Whj H h
j
Y j  f net Yj 
Y
j
 Activation function : pure-linear
f x   x
5
H h x W HY
hj
+
 Yj
 f

Back propagation neural network (BPNN)
◦ Adjust weights
XH
ih
W
a
WhjHY
1
b
k
E
L
F
2
c
3
d
Output layer
4
Input layer

H
h
e
Hidden layer
6
 Yj

Back propagation neural network (BPNN)
◦ Adjust weights
XH
ih
W
W
P   W P  1  W
XH
ih
XH
ih
XH
ih
E
 
XH
Wih
1
2
E    d h  H h 
2 h
 : 學習速率
d h :目標輸出值
E : 誤差函數
7

Support vector machine (SVM)
◦ Classification
◦ Statistics
◦ Hyperplane
optimal separating hyperplane (OSH)
support hyperplane
8
Margin
OSH:最佳分割超平面
Support hyperplane:支持超平面

T.O.V.A
◦ MDD
 Higher omission rates
 Higher mean response times
 More variability

EMG features
◦ MDD
 Lower EA and RMS values
 Higher MF and MPF values
9

T.O.V.A
◦ Compare EMG Comparison by groups during rest
EA(uv)
RMS(uv)
MDF
(PSD)
MPF
(PSD)
Groups
Mean
SD
MDD
22.20
34.84
Control
56.59
53.51
MDD
0.12
0.16
Control
0.28
0.25
MDD
80.40
7.31
Control
73.11
7.77
MDD
84.98
4.19
Control
80.51
4.14
P
0.001
0.000
0.000
0.000
*p<0.05
10

T.O.V.A
◦ Compare EMG Comparison by group during TOVA
EA(uv)
RMS(uv)
MDF
(PSD)
MPF
(PSD)
Groups
Mean
SD
MDD
28.46
38.27
Control
65.01
88.40
MDD
0.14
0.18
Control
0.32
0.40
MDD
80.83
6.59
Control
72.79
6.45
MDD
85.22
3.97
Control
80.43
3.31
P
0.013
0.010
0.000
0.000
*p<0.05
11

Accuracy
Accuracy
Rest
12
TOVA
Train
Test
Train
Test
BPNN
92.06%
76.67%
87.67%
76.67%
SVM
100%
83.33%
98.33%
83.56%




13
MDD becomes more distinguishable when resting
Health controls have wider range of EA and MF
MDD patients have the lower capability on physiological
regulation
Hopefully, the system can be used to detect and to control
the MDD disorder in the future.















14
[1] J.M. Donohue and H.A. Pincus, Reducing the societal burden of depression: a review of economic costs, quality of care
and effects of treatment,Pharmacoeconomics 25 (2007) 7.
[2] P. Sobocki, B. Jonsson, J. Angst, C. Rehnberg.Cost of depression in Europe. J Ment Health Policy Econ 9 (2006) 87.
[3] American Psychiatric Association, Diagnostic and statistical manual of mental disorders (American Psychiatric
Association, Washington, DC, 2000).
[4] R.C. Kessler, P. Berglund, O. Demler, R. Jin, D.Koretz, K.R. Merikangas, A.J. Rush, E.E. Walters, P.S. Wang; National
Comorbidity Survey Replication, The epidemiology of major depressive disorder: results from the National Comorbidity
Survey Replication (NCS-R), JAMA 289 (2003) 3095-105.
[5] G.E. Simon, M. VonKorff, Recognition and management of depression in primary care, Arch Fam Med 4 (1995) 99-105.
[6] W. Katon and P. Ciechanowski, Impact of major depression on chronic medical illness. J Psychosom Res 53 (2002) 85963.
[7] E.J. Perez-Stable, J. Miranda, R.F. Munoz, Y.W.Ying, Depression in medical outpatients.Underrecognition and
misdiagnosis, Arch Intern Med. 150 (1990) 1083-8.
[8] R.M. Carney, B.A. Hong, S. Kulkarni, A. Kapila, A comparison of EMG and SCL in normal and depressed subjects. The
Pavlovian journal of biological science, 16:4 (1981) 212-216.
[9] A. Erfanian, et al., Evoked EMG in electrically stimulated muscle and mechanisms of fatigue, in Engineering in Medicine
and Biology Society (1994) 341 - 342.
[10] E. Park and S. G. Meek, Fatigue compensation of the electromyographic signal for prosthetic control and force
estimation, Biomedical Engineering, IEEE Transactions on 40 (1993) 1019 -1023.
[11] Z. K. Moussavi, et al., The effect of treatment for myofascial trigger points on the EMG fatigue parameters of shoulder
muscles, Engineering in Medicine and Biology Society Proceedings of the 19th Annual International Conference of the IEEE
3 (1997) 1082 - 1085.
[12] S. Haykin, Neural Networks and Learning Machines (3rd ed.): Prentice Hall (2008).
[13] J.F. Greden, N. Genero, H.L. Price, Agitation-increased electromyogram activity in the corrugator muscle region: a
possible explanation of the "Omega sign"?, Am J Psychiatry 142 (1985) 348-51.
[14] S.H. Woodward, M.J. Friedman, D.L. Bliwise,Sleep and depression in combat-related PTSD inpatients, Biological
Psychiatry 39 (1996) 182-92.
[15] L. O'Brien-Simpson, P. Di Parsia, J.G. Simmons, and N.B. Allen, Recurrence of major depressive disorder is predicted
by inhibited startle magnitude while recovered, Journal of Affective Disorders 112 (2008) 243-9.[16] C. Chang, C. Lin,
LIBSVM: a library for support vector machines (2009).
15