下載/瀏覽

Download Report

Transcript 下載/瀏覽

微波電路期中報告

Southern Taiwan University
Department of Electronic Engineering
Outline







Abstract
I. INTRODUCTION
II. EXCITATION AND INTERCONNECTION
OF RESONATORS
III. RESONATORS
IV. OPERATIONAL COMMENTS
V. FILTERS AND CONCLUSIONS
REFERENCES
1
Abstract (1/2)

A structure consisting of dielectric-loaded feed lines (such as surfacewave lines similar to Goubau lines) and below-cutoff air-filled cavities
can be used to form essentially L–C sections.

The capacitance is due to electric-field coupling from the feed-line
dielectric medium into the below-cutoff section. The inductance results
from combining the inductors in the inductive tee equivalent circuit for
such below-cutoff sections. Dielectric loading is used to shorten the guide
wavelength at the input to the evanescent section, increasing the effective
input inductance.

The dielectrically loaded feed lines can comprise microstrip, coplanar
waveguide (CPW), coplanar stripline (CPS), Goubau lines (surface-wave
structures), waveguide, etc. The resulting resonant elements are usable at
frequencies below 1 GHz, with small dimensions. If connected to the common
ground plane, these L–C sections act as a transmission zero.
2
Abstract (2/2)

If “floated,” i.e., connected in the “hot” line rather than to
the ground plane, the sections form bandpass circuits (transmission
poles).

The air-filled below-cutoff sections (evanescent mode) are placed
in a supporting low dielectric-constant medium (air, Teflon, or
similar) with the open end in proximity to the dielectric portion
of the feed line and are, thus, termed “suspended.” The
individual L–C sections can be coupled together using microstrip,
surface-wave line, CPW, CPS, finline, waveguide, or lumped elements.

Such combinations can be chosen to implement Chebychev,
Butterworth, quasi-elliptic, etc. responses. These applications
will be covered at a later time.
3
I. INTRODUCTION
Fig. 3. Equivalent-circuit elements for both: (a) bandpass
and (b) bandstop cases; values of capacitance C given
from Table I, (4–4).
Fig. 4. (a) Metallized wall and bottom below-cutoff
cross section. (b) For a single-mode below cutoff,
the equivalent circuit is a short-circuited tee.
4
II. EXCITATION AND INTERCO NNECTION OF RESONATORS
Fig. 1. Evanescent suspended bandpass
resonator (series transmission pole).
Fig. 2. Evanescent suspended bandstop resonator
(shunt transmission zero).
5
II. EXCITATION AND INTERCO NNECTION OF RESONATORS
Fig. 6. Z versus ln(W =W ) for various values of H.
Fig. 5. Surface-wave line configuration. Enclosure
width is W , line and dielectric widths are W , high
dielectric-constant substrate thickness is d ("r > 10),
support thickness is H, and "r = 2. For surface
wave,H >W .
6
III. RESONATORS
Fig. 7. Bandpass case: F = 1.03 GHz
(measured), 0.93 GHz (simulated), dielectric
constant = 25 in simulation, 20 actual,
substrate thickness is 0.004 in
Fig. 8. Bandstop case: F = 1:82 GHz
(measured), 1.65 GHz (simulated),
dielectric constant = 25 in simulation, 20
actual, 0.004 in thick.
7
III. RESONATORS
Fig. 9. (a) Bandpass and bandstop resonators.
(b) Two resonator bandpass types using either
transmission line or lumped inverters.
8
IV. OPERATIONAL COMMENTS

當加入此介質時,既可在低頻產生共振的效果,無須用大型的共
振電容來產生。

當加入介質並不會犧牲原本的諧振架構,且頻帶很寬,這是本結
構之最大特點;因為寄生元件並不會因此而變差,而是超過截止
頻率時才會導致而成。

截止頻率低於截止節不影響由該 feedlines 的介質加載。

在某些時候,它的目的是使用鐵的電介質的諧振器的執行。
9
V. FILTERS AND CONCLUSIONS

在多個濾波器中,運用2-6個條狀型設計;梯字型與交叉耦合方
式的結構。可運用於 400 MHz 至 4 GHz

製作於封閉面積所小化織架構,該方法也適用於“在一晶片式”
可從100 MHz到10GHz。在某些情況下,由基本長度的諧振與表
面波浪線可代表一個逆變器。

在更近的實現,互連傳輸集中等值線已被替換,可謂以上。

許多拓撲結構是可能的,包括交叉耦合帶通諧振器,個別傳輸零
點放在拒諧振器,等諧振網絡
10
V. FILTERS AND CONCLUSIONS
Fig. 10. One proposed multiresonator
connection.
Fig. 11. Transformation of a series transmission line shown in
(a) into a low-pass pi-equivalent shown in (b). is in radians, !
is filter center frequency in radians. Final values are adjusted
via optimization.
11
V. FILTERS AND CONCLUSIONS
Fig. 12. Propagatingwave comparison. Equivalent frequency principle: higher K shortens
wavelength and has same effect as higher frequency with low K increases reactance of below
cutoff resonator.
12
REFERENCES




J. Papapolymerou, J. Cheng, J. East, and L. Katehi, “A
micromachined high-Q X-band resonator,” IEEE Microwave
Guided Wave Lett., vol. 7, pp. 168–170, June 1997.
R. Snyder, “New application of evanescent waveguide to
filters,” Trans Microwave Theory Tech., vol. MTT-25, pp.
1013–1021, Dec. 1977.
G. Goubau, “Surface-wave lines,” Proc. IRE, vol. 39, pp.
619–624, 1951.
R. Snyder, “Quasi-elliptic compact high-power notch filters
using a mixed lumped and distributed circuit,” Trans.
Microwave Theory Tech., vol. 47, pp. 518–522, Apr. 1999.
13
本人對看法


此篇論文對於濾波器的架構與設計,是由L-C組合而成。
運用微帶性的材料,例如:共面波導(CPW), coplanar
stripline (CPS), Goubau lines (surface-wave structures),
waveguide, etc.,均可由此產生再 1GHz以下的小尺寸結構
來使用。
當加入寄生元件時,不會改變任何現象,既可保持原來既
有優良之效果。