下載/瀏覽

Download Report

Transcript 下載/瀏覽

Silver/Polyaniline Composite Nanotubes:
One-Step Synthesis and Electrocatalytic
Activity for Neurotransmitter Dopamine
Yu Gao, Decai Shan, Fei Cao, Jian Gong,* Xia Li, Hui-yan Ma, Zhong-min Su, and Lun-yu Qu
Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast
Normal UniVersity, Changchun, Jilin 130024, P. R. China
J. Phys. Chem. C 2009, 113, 15175–15181
任課老師 :陳 澄 河 教授
研 究 生 :連 崇 閔
報告日期 :12月29日
1
報告大綱




前言
實驗部分
結果與討論
結論
2
前言

在導電聚合物中,聚苯胺具有聚合簡單、化學穩
定性佳、導電性良好等特性,故已被廣泛應用於
電子器材、燃料電池、感測器等。

多功能金屬/聚苯胺複合材料與純聚苯胺相比具有
更好的特性,如:提高氣體的靈敏度、電催化活
性。
3
前言

到目前為止,仍致力於開發新的方法以製備銀/聚
苯胺奈米複合材料。

在本篇論文中,他們開發出一種簡單的聚合方法,
製備高分散性、高均勻性的銀/聚苯胺奈米複合管,
而不需使用酸性試劑和硬模板。
4
實驗材料

APS

苯胺

硝酸銀
5
實驗流程圖
0.965 mole APS+8ml DI water
0.322 mole苯胺單體
0.117 mole AgNO3
聚合反應控制在0-5 °C下,48 h
持續攪拌6 h
利用去離子水、乙
醇、乙醚清洗數次
SEM、EDX、TEM、XPS、
FT-IR 、 UV-vis 、X-ray 與電化
學分析做探討
真空乾燥24 h,溫
度為50 °C
6
反應機制圖
S2O82- + 2e- → 2SO42- (+2.01 V)
H2SO4
S2O82- + 2e- → 2SO42- (+2.01 V)
Ag+ + e- → Ag (+0.79V)
7
結果與討論(一)
Figure 1. (A, B) SEM images and (C) TEM image of Ag/PANI composite nanotubes. (D)
Corresponding EDX pattern of the Ag/PANI composite nanotubes. Synthetic conditions: [An],
0.322 mM; [APS], 0.965 mM; [AgNO3], 0.117 mM; 15 °C; 48 h.
8
結果與討論(二)
Figure 2. (A) SEM image and (B) corresponding EDX pattern of pure PANI.
Synthetic conditions: [An], 0.322 mM; [APS], 0.965 mM; 15 °C; 48 h.
9
結果與討論(三)
Figure 3. FT-IR spectra of (a) pure PANI and
(b)pure PANI Ag/PANI composite nanotubes.
10
結果與討論(四)
π-π 遷移
銀奈米粒子的吸收峰所造成
極化分子-π 遷移
π-極化分子的遷移
Figure 4. UV-vis spectra of (a) pure PANI and
(b) pure PANI Ag/PANI composite nanotubes.
11
結果與討論(五)
由此XRD圖可得知,此實驗成功製備出Ag/PANI複合材料。
Figure 5. XRD patterns of (a) pure PANI and (b) Ag/PANI composite nanotubes.
(c) Standard data for Ag (JCPDS No. 04-0783) is also
presented in the figures for comparison.
12
結果與討論(六)
Figure 6. XPS spectra of (A) Ag/PANI composite nanotubes, (B) Ag 3d, (C) C 1s, and (D) N 1s.
13
結果與討論(七)
Figure 7. CVs of the ITO electrodes modified with (A) pure PANI and (B) Ag/PANI
composite nanotubes in 0.1 M N2-saturated H2SO4 with different scan rates (from
inner curve to outer curve: 10, 20, 30, 40, 50, 60, 80, and 100 mV/s, respectively). Insets
show the relationship of the redox current of peak I and scan rate.
14
結果與討論(八)
Figure 8. CVs of ITO electrodes modified with (A) pure PANI and (B) Ag/PANI
composite nanotubes cross-linking as work electrodes in 0.1 M N2-saturated H2SO4
solution containing DA with various concentrations of 0.0, 0.5, 1.0, 2.0, 3.0, and 4.0 mM (af). Scan rate: 50 mV/s.
15
結果與討論(九)
由此圖可得知銀/聚苯胺複合奈米管對氨氣偵測的靈敏度較純聚苯胺來的好
Figure 9. (A) Resistance changes of (a) Ag/PANI composite nanotubes and (b)
pure PANI upon exposure to 100 ppm of NH3. The y axis is the normalized
resistance (R/R0), where R0 is the initial resistance of the dedoped PANI before
exposure to the test gas (t ) 0) and R is the time-dependent resistance of the PANI
exposed to the test gas.
16
結果與討論(十)
由此圖可得知銀/聚苯胺複合奈米管即使在低濃度下,仍有靈敏的偵測。
Figure 9.(B) Ag/PANI composite nanotubes exposed to different concentration of
NH3. The y axis is the normalized resistance (R/R0), where R0 is the initial resistance
of the dedoped PANI before exposure to the test gas (t ) 0) and R is the timedependent resistance of the PANI exposed to the test gas.
17
結果與討論( 十ㄧ)
Figure 9.(C) Reversible circulation response change of Ag/PANI composite
nanotubes upon exposure to 100 ppm of NH3. The y axis is the normalized
resistance (R/R0), where R0 is the initial resistance of the dedoped PANI before
exposure to the test gas (t ) 0) and R is the time-dependent resistance of the
PANI exposed to the test gas.
18
結論

本篇作者利用APS作為氧化劑,成功製備出銀/聚苯胺
複合奈米管。

由SEM及TEM圖顯示,銀奈米粒子分散在聚苯胺奈米
管上。

銀/聚苯胺複合奈米管對DA的氧化活性比純聚苯胺奈
米管較好,所以可應用於修飾電極上。

銀/聚苯胺複合材料具有好的靈敏度、高表面積、多孔
性質的管狀型態,所以有很好的氣體敏感性,。
19