Transcript 下載/瀏覽
Silver/Polyaniline Composite Nanotubes: One-Step Synthesis and Electrocatalytic Activity for Neurotransmitter Dopamine Yu Gao, Decai Shan, Fei Cao, Jian Gong,* Xia Li, Hui-yan Ma, Zhong-min Su, and Lun-yu Qu Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal UniVersity, Changchun, Jilin 130024, P. R. China J. Phys. Chem. C 2009, 113, 15175–15181 任課老師 :陳 澄 河 教授 研 究 生 :連 崇 閔 報告日期 :12月29日 1 報告大綱 前言 實驗部分 結果與討論 結論 2 前言 在導電聚合物中,聚苯胺具有聚合簡單、化學穩 定性佳、導電性良好等特性,故已被廣泛應用於 電子器材、燃料電池、感測器等。 多功能金屬/聚苯胺複合材料與純聚苯胺相比具有 更好的特性,如:提高氣體的靈敏度、電催化活 性。 3 前言 到目前為止,仍致力於開發新的方法以製備銀/聚 苯胺奈米複合材料。 在本篇論文中,他們開發出一種簡單的聚合方法, 製備高分散性、高均勻性的銀/聚苯胺奈米複合管, 而不需使用酸性試劑和硬模板。 4 實驗材料 APS 苯胺 硝酸銀 5 實驗流程圖 0.965 mole APS+8ml DI water 0.322 mole苯胺單體 0.117 mole AgNO3 聚合反應控制在0-5 °C下,48 h 持續攪拌6 h 利用去離子水、乙 醇、乙醚清洗數次 SEM、EDX、TEM、XPS、 FT-IR 、 UV-vis 、X-ray 與電化 學分析做探討 真空乾燥24 h,溫 度為50 °C 6 反應機制圖 S2O82- + 2e- → 2SO42- (+2.01 V) H2SO4 S2O82- + 2e- → 2SO42- (+2.01 V) Ag+ + e- → Ag (+0.79V) 7 結果與討論(一) Figure 1. (A, B) SEM images and (C) TEM image of Ag/PANI composite nanotubes. (D) Corresponding EDX pattern of the Ag/PANI composite nanotubes. Synthetic conditions: [An], 0.322 mM; [APS], 0.965 mM; [AgNO3], 0.117 mM; 15 °C; 48 h. 8 結果與討論(二) Figure 2. (A) SEM image and (B) corresponding EDX pattern of pure PANI. Synthetic conditions: [An], 0.322 mM; [APS], 0.965 mM; 15 °C; 48 h. 9 結果與討論(三) Figure 3. FT-IR spectra of (a) pure PANI and (b)pure PANI Ag/PANI composite nanotubes. 10 結果與討論(四) π-π 遷移 銀奈米粒子的吸收峰所造成 極化分子-π 遷移 π-極化分子的遷移 Figure 4. UV-vis spectra of (a) pure PANI and (b) pure PANI Ag/PANI composite nanotubes. 11 結果與討論(五) 由此XRD圖可得知,此實驗成功製備出Ag/PANI複合材料。 Figure 5. XRD patterns of (a) pure PANI and (b) Ag/PANI composite nanotubes. (c) Standard data for Ag (JCPDS No. 04-0783) is also presented in the figures for comparison. 12 結果與討論(六) Figure 6. XPS spectra of (A) Ag/PANI composite nanotubes, (B) Ag 3d, (C) C 1s, and (D) N 1s. 13 結果與討論(七) Figure 7. CVs of the ITO electrodes modified with (A) pure PANI and (B) Ag/PANI composite nanotubes in 0.1 M N2-saturated H2SO4 with different scan rates (from inner curve to outer curve: 10, 20, 30, 40, 50, 60, 80, and 100 mV/s, respectively). Insets show the relationship of the redox current of peak I and scan rate. 14 結果與討論(八) Figure 8. CVs of ITO electrodes modified with (A) pure PANI and (B) Ag/PANI composite nanotubes cross-linking as work electrodes in 0.1 M N2-saturated H2SO4 solution containing DA with various concentrations of 0.0, 0.5, 1.0, 2.0, 3.0, and 4.0 mM (af). Scan rate: 50 mV/s. 15 結果與討論(九) 由此圖可得知銀/聚苯胺複合奈米管對氨氣偵測的靈敏度較純聚苯胺來的好 Figure 9. (A) Resistance changes of (a) Ag/PANI composite nanotubes and (b) pure PANI upon exposure to 100 ppm of NH3. The y axis is the normalized resistance (R/R0), where R0 is the initial resistance of the dedoped PANI before exposure to the test gas (t ) 0) and R is the time-dependent resistance of the PANI exposed to the test gas. 16 結果與討論(十) 由此圖可得知銀/聚苯胺複合奈米管即使在低濃度下,仍有靈敏的偵測。 Figure 9.(B) Ag/PANI composite nanotubes exposed to different concentration of NH3. The y axis is the normalized resistance (R/R0), where R0 is the initial resistance of the dedoped PANI before exposure to the test gas (t ) 0) and R is the timedependent resistance of the PANI exposed to the test gas. 17 結果與討論( 十ㄧ) Figure 9.(C) Reversible circulation response change of Ag/PANI composite nanotubes upon exposure to 100 ppm of NH3. The y axis is the normalized resistance (R/R0), where R0 is the initial resistance of the dedoped PANI before exposure to the test gas (t ) 0) and R is the time-dependent resistance of the PANI exposed to the test gas. 18 結論 本篇作者利用APS作為氧化劑,成功製備出銀/聚苯胺 複合奈米管。 由SEM及TEM圖顯示,銀奈米粒子分散在聚苯胺奈米 管上。 銀/聚苯胺複合奈米管對DA的氧化活性比純聚苯胺奈 米管較好,所以可應用於修飾電極上。 銀/聚苯胺複合材料具有好的靈敏度、高表面積、多孔 性質的管狀型態,所以有很好的氣體敏感性,。 19