Transcript 下載/瀏覽
三維壓電彈性力學 Chien-Ching Ma Ru-Li Lin 92.03.31 內容大綱 三維問題 二維問題_平面問題 二維問題_反平面問題 二維問題_壓電問題 二維問題_解的架構 二維問題_全平面的基本解 二維問題_半平面的解函數 三維(3–D)問題 y y f x z z x f 二維(2–D)問題 y f A B C D x f y A f B C D x A B 平 面 問 題 D C A z B D C 反 平 面 問 題 x Constitutive Equation of Piezoelectric Material Di : 電位移 (Electric displacement) ij cijkluk ,l eijk Ek Di eikl u k ,l ik Ek Ek : 電場 (Electric field) C ijkl : 彈性模數 (Elastic modulus) eijk : 壓電係數 (Piezoelectric coefficient) ij : 介電常數 (Dielectric constant) ij sijkl kl g kij Dk sijkl : 彈性柔度 (Elastic compliance) g kij : 壓電常數 (Piezoelectric constant) Ei g ikl kl ik Dk ik : 反誘電常數 (Dielectric impermeability constant) 構 造 方 程 式 的 矩 陣 形 式 xx s11 yy s12 zz s13 2 yz s14 2 xz s15 2 xy s16 Ex g11 E y g 21 E g 31 z s12 s13 s14 s15 s22 s23 s24 s25 s23 s33 s34 s35 s24 s34 s44 s45 s25 s35 s45 s55 s26 s36 s46 s56 g12 g13 g14 g15 g 22 g 23 g 24 g 25 g 32 g 33 g 34 g 35 s16 xx g11 s26 yy g12 s36 zz g13 s46 yz g14 s56 xz g15 s66 xy g16 xx yy g16 11 zz g 26 12 yz g 36 xz 13 xy g 21 g 22 g 23 g 24 g 25 g 26 g 31 g 32 Dx g 33 Dy g 34 Dz g 35 g 36 12 13 Dx 22 23 D y 23 33 Dz Generalized Plane Problem (infinite at z) xx a11 a12 yy a12 a22 yz a14 a24 xz a15 a25 a a26 xy 16 E x b11 b12 E b y 21 b22 aij sij bij g ij si 3 s j 3 s33 s j3 gi3 a14 a24 a44 a45 a46 b14 b24 a15 a25 a45 a55 a56 b15 b25 a16 a26 a46 a56 a66 b16 b26 b11 b21 xx b12 b22 yy b14 b24 yz b15 b25 xz b16 b26 xy d11 d12 Dx d12 d 22 Dy ( g 3i si 3 g 33 / s33 )( g 3 j s j 3 g 33 / s33 ) 33 g 33 g 33 / s33 ( i 3 g i 3 g 33 / s33 )( g 3 j s j 3 g 33 / s33 ) s33 33 g 33 g 33 / s33 g i 3 g i 3 ( i 3 g i 3 g 33 / s33 )( 3 j s j 3 g 33 / s33 ) d ij ij s33 33 g 33 g 33 / s33 i, j 1, 2, , 6 i 1, 2, j 1, 2, , 6 i, j 1, 2 Equilibrium Equations ij , j f i 0 : Elastic Equilibrium, (fi : body force) Di ,i q 0 : Gauss’s law of Electrostatics or Maxwell’s equation (q: electric charge density) Compatibility Equations 2 2 xy 2 xx yy 2 0 2 2 xy y x E x E y 0 y x Stress and Electric Displacement function (F , , ) xx 2F 2 y 2F yy 2 x 2F xy xy xz y yz x y Dy x In-Plane Anti-Plane In-Plane Dx Governing Equation of Generalized Plane Problem L4 F L3 L*3 0 * L L F L 3 2 0 2 * ** * L L F L 2 0 2 3 L8 F 0 2 2 2 L2 a44 2 2a45 a55 2 xy x y 2 2 2 L*2 b24 2 (b14 b25 ) b15 2 xy x y 2 2 2 ** L2 d 22 2 2d12 d11 2 xy x y L8 L4 L2 L*2 2 L3 L*3 L*2 L*3 L*3 L2 L4 L*2 L*2 L3 L*2 L*2 4 4 4 4 4 L4 a22 4 2a26 3 (2a12 a66 ) 2 2 2a16 a11 4 3 x x y x y xy y 3 3 3 3 L3 a24 3 (a25 a46 ) 2 (a14 a56 ) a15 3 2 x x y xy y 3 3 3 3 L b22 3 (b12 b26 ) 2 (b21 b16 ) b11 3 2 x x y xy y * 3 Special Cases Case I : Monoclinic (symmetric w.r.t. x-y plane, class m) s11 s 12 s13 sij 0 0 s16 s12 s13 0 0 s22 s23 0 0 s 23 s33 0 0 0 0 s 44 s45 0 0 s45 s55 s26 s36 0 0 L3 L*2 0 s16 s26 s36 0 0 s66 g11 g ij g 21 0 11 ij 12 0 L4 F L*3 0 L2 0 * ** L F L 2 0 3 g12 g13 0 0 g 22 0 g 23 0 0 g 34 0 g 35 12 22 0 0 33 0 ( L4 L*2 L*3 L*3 ) F 0 L2 0 In-plane problem of piezoelectric material g16 g 26 0 Case II : Transversely Isotropic (Hexagonal, class 6mm) s11 s 12 s13 sij 0 0 0 s12 s13 0 0 s12 s13 0 0 s13 s33 0 0 0 0 s44 0 0 0 0 s44 0 0 0 0 L3 L*3 0 0 0 0 0 g ij 0 0 0 g15 0 g 31 g 31 g 33 0 0 0 0 11 0 0 0 0 11 ij 2( s11 s12 ) 0 0 33 0 L4 F 0 L2 L*2 0 * ** L L 2 2 0 L4 F 0 ** * * ( L L L 2 L2 ) 0 2 2 Anti-plane problem of piezoelectric material g15 0 0 0 0 0 Case III : Orthotropic (Orthorhombic, class mmm) L L 0 * 2 * 3 L4 F L3 0 L3 F L2 0 ** L2 0 ( L4 L2 L3 L3 ) F 0 ** L2 0 No piezoelectric effect Case IV : Orthotropic (Principal axis = axis of coordinate ) L*2 L*3 L3 0 L4 F 0 L2 0 ** L2 0 No piezoelectric effect Plane problem of transversely isotropic material Symmetric plane = x-y plane, poling direction = z axis xx s11 yy s12 zz s13 2 yz 0 2 xz 0 2 xy 0 s12 s13 0 0 s11 s13 0 0 s13 s33 0 0 0 0 s44 0 0 0 0 s44 0 0 0 0 0 xx 0 0 yy 0 0 zz 0 0 yz 0 0 xz g15 s66 xy 0 0 0 0 g 24 0 0 g 31 g 32 Dx g 33 D y 0 Dz 0 0 s66 2(s11 s12 ) Ex 0 E y 0 E g 31 z 0 0 0 g15 0 0 g15 0 g 32 g 33 0 0 xx yy 0 11 zz 0 0 yz 0 0 xz xy 0 11 0 0 Dx 0 D y 33 Dz Complete State of Electromechanical Interaction for Two-Dimensional Model fy f2 fx Dn f1 Dn fy fx z Dn f2 f1 Dn fy f2 fx Dn f1 x Dn y x x1 y yy yz xz E y 0 z x2 Constitutive Equations of Two-Dimension Transversely isotropic material a12 11 a11 a a22 22 12 0 2 12 0 E 0 0 1 E2 b21 b22 0 0 a33 b13 0 0 b21 11 0 b22 22 b13 0 12 d11 0 D1 0 d 22 D2 b21 (1 s12 / s11 ) g 31 d11 11 b22 g 33 g 31s13 / s11 2 d 22 33 g 31 / s11 b13 g15 s122 a11 s11 s11 a12 s13 s12 s13 s11 s132 a22 s33 s11 a33 s44 Equilibrium equation (absence of body force and free electric volume charge) 11 12 0 x1 x2 12 22 0 x1 x2 Compatibility equation 2 2 xy 2 xx yy 2 0 2 2 xy y x E x E y 0 y x Stress function and electric displacement function 2F 11 2 , y 2F 22 2 , x D2 , x2 D1 x1 2F 12 xy D1 D2 0 x1 x2 Governing Equations of Two-Dimension Transversely isotropic material L4 F L3 0 L3 F L2 0 ( L4 L2 L3 L3 ) F 0 4 4 4 L4 a22 4 (2a12 a33 ) 2 2 a11 4 x1 x1 x2 x2 3 3 L3 b22 3 (b21 b13 ) x1 x1x22 2 2 L2 d 22 2 d11 2 x1 x2 Explicit form of governing equation 6 F 6 F 6F 6 F 4 6 3 4 2 2 2 4 1 6 0 x1 x1 x2 x1 x2 x2 1 a11d11 2 a11d 22 2a12d11 a33d11 b212 b132 2b21b13 3 a22d11 2a12d 22 a33d 22 2b21b22 2b13b22 4 a22d 22 b222 Fourier transform pair ~ g ( , Y ) g ( X , Y )e iX dX 1 g( X ,Y ) 2 g~( , Y )e iX d Governing equation in transform domain ~ 4~ 2~ d 6F F d F ~ 1 6 2 2 4 3 4 2 4 6 F 0 dx2 dx2 dx1 Let ~ F ceipx2 6 (1 p 6 2 p 4 3 p 2 4 )ceipx 0 1 p 6 2 p 4 3 p 2 4 0 2 Characteristic of roots (form I) p1 i1 , p2 i 2 , p3 i3 , p4 p1 , p5 p2 , p6 p3 Characteristic of roots (form II) p1 i , p2 i , p3 i3 , p4 p1 , p5 p2 , p6 p3 Operator in transform domain 2 4 d d ~ L4 4 a 22 (2a12 a 33 ) 2 2 a11 4 dx 2 dx 2 d2 ~ 3 L3 i b22 i (2b21 b13 ) 2 dx2 d2 ~ 2 L2 d 22 d11 2 dx2 ~ ~ Relations of F and in the transform domain By ~~ ~~ L3 F L2 0 ~ ~ F k Let ~ F ceipx2 i (b21 b13 ) p 2 b22 where k d 22 d11 p 2 Or ~ ~ ~~ ~ ~ a11 p 4 (a33 2a12 ) p 2 a22 * L4 F L3 0 k F where k d 22 d11 p 2 k *k 1 p 6 2 p 4 3 p 2 4 0 Field in the transform domain ~ d F 2 2~ 11 2 pk F dx2 2 ~ ~ d ~ D1 ip k k 2 F dx2 ~ ~22 2 F ~ dF 2~ 12 i pk F dx2 ~ ~ 2~ D2 i ik F ~ ~ ~11 a11~11 a12~22 b21D2 (a11 pk2 a12 ib21k ) 2 F ~ 2 ~ u1 i(a11 pk a12 ib21k ) F ~ ~ ~22 a12~11 a22~22 b22 D2 (a12 pk2 a22 ib22k ) 2 F ~ ~ u2 i(a11 pk a12 / pk ib21k / pk ) F General solution in the transform domain ~ σ u ~ P e i p* y c ~ D ~ 1 22 ~ σ 2 ~12 ~ u 1 1 ~ u i u~2 ~ 1 D1 ~ D 2 ~ i D2 1 1 1 1 1 1 p p p p p p 2 3 4 5 6 1 ( p1 ) ( p2 ) ( p3 ) ( p4 ) ( p5 ) ( p6 ) P ( p ) ( p ) ( p ) ( p ) ( p ) ( p ) 1 2 3 4 5 6 p11 p 2 2 p33 p 4 4 p5 5 p6 6 1 2 3 4 5 6 c1 c 2 c3 c c 4 c5 c6 Green’s Function of Infinite Plane ~ ~ f σ σ 1 u ~ ~ u b ~ i ~ D y d D y d iQ f2 f f1 c c b1 b b2 1 2 e i p*d q Q1 Q Q2 q1 q 2 f q3 q P 1 b q4 D q5 q6 iq j 3 x p ( x d ) 22 1 j 1 1 j 2 Re 3 ip q j j 12 j 1 x1 p j ( x2 d ) 3 ( p j 3 )q j ln x1 p j ( x2 d ) u1 1 j 1 Re 3 u ( p )q ln x p ( x d ) 2 j 3 j 1 1 2 j 1 3 D1 1 j 1 x1 D Im 3 2 j 1 x1 iq j p j ( x2 d ) ip j q j p j ( x2 d ) Surface Green’s Function of Half-Plane 22 ( x,0) f 2 ( x) f2 x1 12 ( x,0) 0 D2 ( x,0) 0 x2