Transcript pptx
Spatial and Temporal Trends in Tidal Flat Shape in San Francisco Bay Josh Bearman, Carl Friedrichs, Bruce Jaffe, Amy Foxgrover Main Points 1) On tidal flats, sediment (especially mud) moves away from high concentration areas and towards areas of weaker energy. 2) Tides and/or abundant sediment supply favor a convex upward profile; waves and/or sediment loss favor a concave upward profile. 3) South San Francisco Bay provides a case study supporting these trends, both in space and in time. Aerial Photo of flats near Dumbarton Bridge, South San Francisco Bay Courtesy http://asapdata.arc.nasa.gov Spatial and Temporal Trends in Tidal Flat Shape in San Francisco Bay Josh Bearman, Carl Friedrichs, Bruce Jaffe, Amy Foxgrover Visit Josh at TheHotSeats.net Main Points 1) On tidal flats, sediment (especially mud) moves away from high concentration areas and towards areas of weaker energy. 2) Tides and/or abundant sediment supply favor a convex upward profile; waves and/or sediment loss favor a concave upward profile. 3) South San Francisco Bay provides a case study supporting these trends, both in space and in time. Aerial Photo of flats near Dumbarton Bridge, South San Francisco Bay Courtesy http://asapdata.arc.nasa.gov South Bay Salt Pond Project • First ponds leveed in 1854 • Currently 26,000 acres of salt ponds in South Bay • October, 2000 • 61% of ponds sold to large conglomerate of GOs, NGOs, private foundations. What moves sediment across flats? Ans: Tides plus concentration gradients; (i) Due to energy gradients: Tidal advection High energy waves and/or tides Low energy waves and/or tides Higher sediment concentration Tidal advection High energy waves and/or tides Low energy waves and/or tides Lower sediment concentration 1 What moves sediment across flats? Ans: Tides plus concentration gradients; (ii) Due to sediment supply: Tidal advection Sediment source from river or local runoff Low energy waves and/or tides Higher sediment concentration “High concentration boundary condition” Net settling of sediment Tidal advection Lower sediment concentration “High concentration boundary condition” Net settling of sediment 2 Maximum tide and wave orbital velocity distribution across a linearly sloping flat: z = R/2 h(t) = (R/2) sin wt h(x,t) z=0 z = - R/2 x=0 x x = xf(t) Spatial variation in tidal current magnitude Spatial variation in wave orbital velocity 3.0 1.2 UW90/UW90(L/2) UT90/UT90(L/2) 1.4 1.0 0.8 Landward TideInduced Sediment Transport 0.6 0.4 0.2 x=L Z(x) 0 0.2 0.4 0.6 x/L 0.8 1 2.5 2.0 Seaward Wave-Induced Sediment Transport 1.5 1.0 0.5 0 0.2 0.4 0.6 0.8 1 x/L 3 Spatial and Temporal Trends in Tidal Flat Shape in San Francisco Bay Josh Bearman, Carl Friedrichs, Bruce Jaffe, Amy Foxgrover Main Points 1) On tidal flats, sediment (especially mud) moves away from high concentration areas and towards areas of weaker energy. 2) Tides and/or abundant sediment supply favor a convex upward profile; waves and/or sediment loss favor a concave upward profile. 3) South San Francisco Bay provides a case study supporting these trends, both in space and in time. Aerial Photo of flats near Dumbarton Bridge, South San Francisco Bay Courtesy http://asapdata.arc.nasa.gov Spatial and Temporal Trends in Tidal Flat Shape in San Francisco Bay Josh Bearman, Carl Friedrichs, Bruce Jaffe, Amy Foxgrover Main Points 1) On tidal flats, sediment (especially mud) moves away from high concentration areas and towards areas of weaker energy. 2) Tides and/or abundant sediment supply favor a convex upward profile; waves and/or sediment loss favor a concave upward profile. 3) South San Francisco Bay provides a case study supporting these trends, both in space and in time. Aerial Photo of flats near Dumbarton Bridge, South San Francisco Bay Courtesy http://asapdata.arc.nasa.gov South San Francisco Bay Tidal Flats: South San Francisco Bay 700 tidal flat profiles in 12 regions, separated by headlands and creek mouths. MHW to MLLW MLLW to - 0.5 m San Mateo Bridge 0 4 km Dumbarton Bridge 12 1 11 2 3 10 4 9 8 5 Semi-diurnal tidal range up to 2.5 m 7 6 6 Dominant mode of profile shape variability determined through eigenfunction analysis: Amplitude (meters) Across-shore structure of first eigenfunction South San Francisco Bay MHW to MLLW First eigenfunction (deviation from mean profile) 90% of variability explained MLLW to - 0.5 m San Mateo Bridge Mean + positive eigenfunction score = convex-up Mean + negative eigenfunction score = concave-up Dumbarton Bridge Normalized seaward distance across flat Height above MLLW (m) Mean profile shapes 12 Profile regions 1 11 2 3 10 4 9 5 4 km 6 8 7 Normalized seaward distance across flat 7 Significant spatial variation is seen in convex (+) vs. concave (-) eigenfunction scores: 8 4 10-point running average of profile first eigenfunction score Convex Eigenfunction score 12 Profile regions 0 1 Concave 2 3 -4 4 2 5 0 -2 8 9 4 km 10 6 8 7 6 11 3 9 5 Convex 2 1 10 4 7 Regionally-averaged score of first eigenfunction 11 4 Concave 12 Tidal flat profiles 8 11 10 2 3 4 9 5 2.3 0 2.2 -2 Concave 3 5 7 9 Profile region 11 .6 r = + .92 .4 .2 0 0 -2 -.2 Concave 1 3 5 7 9 Profile region 11 -.4 2 r = - .82 0 1 -2 2.1 .8 Deposition 2 Fetch Length Concave 1 3 1 Convex 4 Eigenfunction score r = + .87 3 2 5 7 9 Profile region 11 Convex 4 7 6 Convex 4 Eigenfunction score 2 2.4 Net 22-year deposition (m) Eigenfunction score Tide Range 1 Eigenfunction score 2.5 Mean tidal range (m) Convex 0 40 30 2 Grain Size 0 20 r = - .61 -2 10 Concave 1 3 5 7 9 Profile region 11 8 Average fetch length (km) 1 4 km 4 Profile regions 12 Mean grain size (mm) -- Tide range & deposition are positively correlated to eigenvalue score (favoring convexity). -- Fetch & grain size are negatively correlated to eigenvalue score (favoring concavity). 0 9 Tide + Deposition – Fetch Explains 89% of Variance in Convexity/Concavity South San Francisco Bay 4 Observed Score Modeled Score MLLW to - 0.5 m San Mateo Bridge r = + .94 r2 = .89 2 0 Dumbarton Bridge Modeled Score = C1 + C2 x (Deposition) + C3 x (Tide Range) – C4 x (Fetch) Concave -2 1 3 5 7 Profile region Profile regions 12 1 9 11 10 2 3 4 9 5 6 11 Flat elevation Eigenfunction score Convex MHW to MLLW 8 7 Seaward distance across flat 10 Spatial and Temporal Trends in Tidal Flat Shape in San Francisco Bay Josh Bearman, Carl Friedrichs, Bruce Jaffe, Amy Foxgrover Main Points 1) On tidal flats, sediment (especially mud) moves away from high concentration areas and towards areas of weaker energy. 2) Tides and/or abundant sediment supply favor a convex upward profile; waves and/or sediment loss favor a concave upward profile. 3) South San Francisco Bay provides a case study supporting these trends, both in space and in time. Aerial Photo of flats near Dumbarton Bridge, South San Francisco Bay Courtesy http://asapdata.arc.nasa.gov (Jaffe et al. 2006) 11 Eigenfunction score 10-point running average of profile first eigenfunction score Regions 12 11 10 1 2 3 4 9 5 6 Eigenfunction score 4 km 8 7 Regionally-averaged score of first eigenfunction 12 Eigenfunction score 10-point running average of profile first eigenfunction score Regions 12 11 10 1 2 3 4 9 5 6 Eigenfunction score 4 km 8 7 Regionally-averaged score of first eigenfunction Inner regions (5-11) tend to be more convex 12 Variation of External Forcings in Time: Sed load at delta (Ganju et al. 2008) South San Francisco Bay MHW to MLLW MLLW to - 0.5 m San Mateo Bridge Dumbarton Bridge San Jose 13 - Trend of Scores in Time (+ = more convex, - = more concave) 1 11 10 2 3 4 Region 2 Region 1 Region 3 Score -1 -1 9 5 6 8 7 0 -2 -1 Region 4 Region 6 Region 5 0 Score 1 0 0 -2 -1 Region 7 -2 Region 8 4 Score 4 km 0 -2 2 0 4 2 2 1 0 0 Region 9 Region 12 Region 11 Region 10 Score Regions 12 0 2 1 -1 1 1900 1950 Year 2000 1900 1950 Year 2000 -1 1900 1950 Year 2000 14 - Trend of Scores in Time (+ = more convex, - = more concave) - Outer regions are getting more concave in time (i.e., eroding) - Inner regions are not (i.e., more stable) 1 11 10 2 3 4 Region 2 Region 1 Score -1 -1 9 5 8 7 Region 3 6 Region 6 Outer regions 0 -2 -1 Region 4 Region 5 0 Score 1 0 0 -2 Inner regions -1 Region 7 -2 Region 8 4 Score 4 km 0 -2 2 0 4 2 2 1 0 0 Region 9 0 2 Outer regions Region 12 Region 11 Region 10 Score Regions 12 1 -1 1 1900 1950 Year 2000 1900 1950 Year 2000 -1 1900 1950 Year 2000 14 - Trend of Scores in Time (+ = more convex, - = more concave) CENTRAL VALLEY SEDIMENT DISCHARGE - Outer regions become more concave as sediment discharge decreases Region 2 4 4 2 -2 -1 Score * -2 2 0 2 -1 Region 8 4 4 Score 6 6 2 4 0 2 6 4 2 -2 Region 9 2 * 6 2 4 0 2 1 2 6 4 1 2 0 Region 12 0 6 * 1 2 1900 1950 Year 2000 6 4 4 -1 2 2000 6 4 Region 11 Region 10 1950 Year 0 4 Region 7 Score Region 6 * 6 4 1900 2 Region 5 1 6 4 -2 2 Region 4 0 * 6 -1 2 1900 1950 Year 2000 4 km 9 5 8 7 Sediment Disch. (MT) * 0 2 3 6 Sediment Disch. (MT) 6 Region 3 0 11 10 4 Sediment Disch. (MT) * -1 -1 1 Sediment Disch. (MT) Score Region 1 Regions 12 Outer regions Inner regions *SIGNIFICANT Outer regions 15 - Trend of Scores in Time (+ = more convex, - = more concave) PACIFIC DECADAL OSCILLATION - No significant relationship to changes in shape 1 11 10 2 3 4 Region 2 -1 1 0 0 0 -1 0 Score 1 1 1 0 -2 0 0 -1 -1 1 4 1 2 1 2 0 2 0 1 0 0 -1 0 -1 0 -1 -1 -1 -2 Region 8 4 0 0 Region 7 Region 12 1 1 1 0 2 1 0 0 0 -1 1 1900 1950 Year 2000 -1 1900 1950 Year 2000 -1 -1 Outer regions Inner regions Region 9 Region 11 Region 10 7 PDO Index 1 PDO Index Region 6 Region 5 0 8 -1 -1 Region 4 Score 1 -2 -1 9 5 6 0 4 km PDO Index 1 -1 -2 Score Region 3 -1 1900 1950 Year 2000 PDO Index Score Region 1 Regions 12 Outer regions 16 - Trend of Scores in Time (+ = more convex, - = more concave) Relationship to preceding deposition or erosion - Inner and outer regions more concave after erosion, more convex after deposition Region 2 -.2 -.4 -2 Region 4 0 .2 Score .3 0 0 Score .6 * .3 0 0 2 * Score 2 .5 1 0 0 .6 .3 0 Region 12 Region 11 .6 * * 0 .3 0 1 1950 Year 1 Region 9 0 Region 10 1900 0 -.3 -2 Region 8 4 * 0 2000 .4 0 -.2 -1 2 2 Region 6 1 Region 7 4 -.4 Region 5 * -2 0 0 -.3 -1 -2 0 .2 0 1 0 -1 1900 1950 Year 2000 -.2 -1 -.3 1900 1950 Year 2000 8 7 Bed change (m) 0 0 4 km 9 5 6 Bed change (m) -1 4 Region 3 -1 11 10 2 3 Bed change (m) .3 1 Bed change (m) Score Region 1 Regions 12 Outer regions Inner regions *SIGNIFICANT Outer regions 17 - Trend of Scores in Time (+ = more convex, - = more concave) SAN JOSE RAINFALL - Inner regions more convex when San Jose rainfall increases Region 2 0 15 20 Score 0 15 -2 Region 6 * 15 0 Region 7 Region 8 * 2 0 20 4 15 2 10 0 20 20 1 10 -1 4 10 10 Region 5 * 0 15 10 10 -2 Region 9 20 2 20 15 1 15 10 0 10 Region 12 Region 11 Region 10 20 20 20 0 2 1 15 15 15 -1 1 1900 1950 Year 10 2000 1900 1950 Year San Jose Rainfall (in) 10 -1 Region 4 Score 15 -2 -2 Score 20 0 10 -1 2000 10 1900 1950 Year 2000 4 km 9 5 6 San Jose Rainfall (in) 15 4 San Jose Rainfall (in) 20 11 10 2 3 Region 3 20 -1 -1 1 San Jose Rainfall (in) Score Region 1 Regions 12 8 7 San Jose Outer regions Inner regions *SIGNIFICANT Outer regions 18 - Trend of Scores in Time (+ = more convex, - = more concave) CHANGES IN TIDAL RANGE THROUGH TIME - No significant relationships to temporal changes in tidal range 1 11 10 2 3 4 Region 2 -2 1.7 -1 1.7 Region 4 Score 0 1.8 0 0 -2 1.7 -1 Region 7 Region 8 1.8 4 Score Region 6 1.8 1 2 1.7 0 1.7 -2 4 1.8 2 2 1 0 1.7 0 1.7 1.8 1.8 1.7 Region 12 1.8 0 2 1.8 1 -1 1 1900 1950 Year 1.7 2000 1900 1950 Year 1.7 -1 2000 Outer regions Inner regions Region 9 Region 11 Region 10 7 1.7 Region 5 1.8 8 Tidal Range (m) 0 -2 Score 1.8 9 5 6 Tidal Range (m) -1 1.8 0 4 km Tidal Range (m) Score 1.8 -1 Region 3 1.7 1900 1950 Year 2000 Tidal Range (m) Region 1 Regions 12 Outer regions 19 Temporal Analysis: Multiple Regression Significance (slope/std err) Region Mult Reg Rsq CV Seds SJ Rainfall Dep/Eros r1 0.82 4.21 ––– ––– r2 0.73 3.19 ––– ––– r3 0.71 3.07 ––– ––– r4 0.55 2.10 ––– ––– r5 0.95 8.18 ––– 3.43 r6 0.53 ––– ––– 1.51 r7 0.35 ––– 1.39 ––– r8 0.47 ––– 1.29 1.12 r9 0.66 2.03 ––– 2.4 r10 0.94 3.41 ––– 7.77 r11 0.46 1.05 ––– 1.37 r12 0.51 1.39 ––– ––– Less Central Valley sediment discharge: Outer regions more concave. More San Jose Rains: Inner regions more convex. Recent deposition (or erosion): Middle regions more convex (or concave) 12 1 2 11 San Jose 3 10 4 9 5 6 8 7 20 Spatial and Temporal Trends in Tidal Flat Shape in San Francisco Bay Josh Bearman, Carl Friedrichs, Bruce Jaffe, Amy Foxgrover Main Points 1) On tidal flats, sediment (especially mud) moves away from high concentration areas and towards areas of weaker energy. 2) Tides and/or abundant sediment supply favor a convex upward profile; waves and/or sediment loss favor a concave upward profile. 3) South San Francisco Bay provides a case study supporting these trends, both in space and in time. Aerial Photo of flats near Dumbarton Bridge, South San Francisco Bay Courtesy http://asapdata.arc.nasa.gov