Transcript PPT
Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates http://numericalmethods.eng.usf.edu 1 Direct Method of Interpolation http://numericalmethods.eng.usf.edu What is Interpolation ? Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given. Figure 1 Interpolation of discrete. 3 http://numericalmethods.eng.usf.edu Interpolants Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate 4 http://numericalmethods.eng.usf.edu Direct Method Given ‘n+1’ data points (x0,y0), (x1,y1),………….. (xn,yn), pass a polynomial of order ‘n’ through the data as given below: y a0 a1 x .................... an x . n where a0, a1,………………. an are real constants. Set up ‘n+1’ equations to find ‘n+1’ constants. To find the value ‘y’ at a given value of ‘x’, simply substitute the value of ‘x’ in the above polynomial. 5 http://numericalmethods.eng.usf.edu Example A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below. If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the direct method for linear interpolation. 6 x (m) y (m) 2 4.25 5.25 7.81 9.2 10.6 7.2 7.1 6.0 5.0 3.5 5.0 Figure 2 Location of holes on the rectangular plate. http://numericalmethods.eng.usf.edu Linear Interpolation yx a0 a1 x 7.2 y 2.00 a0 a1 2.00 7.2 y 4.25 a0 a1 4.25 7.1 7.2 7.18 7.16 ys f ( range) f x desired 7.14 7.12 Solving the above two equations gives, a0 7.2889 a1 0.044444 7.1 7.1 7.08 5 x s 10 0 Hence 7 0 5 10 x s range x desired y x 7.2889 0.044444 x, 2.00 x 4.25 y 4.00 7.2889 0.0444444.00 7.1111 in. http://numericalmethods.eng.usf.edu x s 10 1 Example A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below. If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the direct method for quadratic interpolation. 8 x (m) y (m) 2 4.25 5.25 7.81 9.2 10.6 7.2 7.1 6.0 5.0 3.5 5.0 Figure 2 Location of holes on the rectangular plate. http://numericalmethods.eng.usf.edu Quadratic Interpolation y x a 0 a1 x a 2 x 2 y 2.00 a 0 a1 2.00 a 2 2.00 7.2 2 y 4.25 a0 a1 4.25 a 2 4.25 7.1 2 y 5.25 a0 a1 5.25 a 2 5.25 6.0 2 Solving the above three equations gives a0 4.5282 9 a1 1.9855 a 2 0.32479 http://numericalmethods.eng.usf.edu Quadratic Interpolation (contd) y x 4.5282 1.9855 x 0.32479 x 2 , 2.00 x 5.25 y 4.00 4.5282 1.98554.00 0.324794.00 7.2735 in. 7.56258 The absolute relative approximate error a obtained between first and second order polynomial is a 7.2735 7.1111 100 7.2735 2 8 7.5 ys f ( range) f x desired 7 6.5 2.2327% 6 6 2 2 10 2.5 3 3.5 4 4.5 5 x s range x desired http://numericalmethods.eng.usf.edu 5.5 5.25 Comparison Table 11 Order of Polynomial 1 2 Location (in.) 7.1111 7.2735 Absolute Relative Approximate Error ---------- 2.2327% http://numericalmethods.eng.usf.edu Example A robot arm with a rapid laser scanner is doing a quick quality check on holes drilled in a rectangular plate. The hole centers in the plate that describe the path the arm needs to take are given below. If the laser is traversing from x = 2 to x = 4.25 in a linear path, find the value of y at x = 4 using the direct method using a fifth order polynomial. 12 x (m) y (m) 2 4.25 5.25 7.81 9.2 10.6 7.2 7.1 6.0 5.0 3.5 5.0 Figure 2 Location of holes on the rectangular plate. http://numericalmethods.eng.usf.edu Fifth Order Interpolation 2 3 4 5 y x a 0 a1 x a 2 x a3 x a 4 x a5 x y 2.00 7.2 a0 a1 2.00 a 2 2.00 a3 2.00 a 4 2.00 a 5 2.00 2 3 4 5 y 4.25 7.1 a0 a1 4.25 a 2 4.25 a3 4.25 a 4 4.25 a5 4.25 2 3 4 5 y 5.25 6.0 a 0 a1 5.25 a 2 5.25 a3 5.25 a 4 5.25 a5 5.25 2 3 4 5 y 7.81 5.0 a0 a1 7.81 a 2 7.81 a3 7.81 a 4 7.81 a5 7.81 2 3 4 5 y 9.20 3.5 a 0 a1 9.20 a 2 9.20 a3 9.20 a 4 9.20 a5 9.20 2 3 4 5 y 10.60 5.0 a0 a1 10.60 a 2 10.60 a3 10.60 a 4 10.60 a5 10.60 2 13 3 4 5 http://numericalmethods.eng.usf.edu Fifth Order Interpolation (contd) Writing the six equations in matrix form, we have 1 1 1 1 1 1 2.00 4.25 5.25 7.81 9.20 10.6 4.00 18.063 27.563 60.996 84.640 112.36 8.00 76.766 144.70 476.38 778.69 1191.0 a0 30.898 a1 41.344 a3 2.7862 16.00 32 a0 7.2 326.25 1386.6 a1 7.1 759.69 3988.4 a 2 6.0 3720.5 29057 a3 5.0 7163.9 65908 a 4 3.5 12625 133820 a5 5.0 a2 15.855 a4 0.23091 a5 0.0072923 yx 30.898 41.344 x 15.855 x 2 2.7862 x 3 0.23091x 4 0.0072923x 5 ,2 x 10.6 14 http://numericalmethods.eng.usf.edu Fifth Order Interpolation (contd) yx 30.898 41.344 x 15.855 x 2 2.7862 x 3 0.23091x 4 0.0072923x 5 ,2 x 10.6 15 http://numericalmethods.eng.usf.edu Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/direct_met hod.html THE END http://numericalmethods.eng.usf.edu