Transcript Blume
Particle Production at the SPS and the QCD Phase Diagram Christoph Blume University of Frankfurt 26th Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica January 2010 Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Outline How to probe different regions of the QCD phase diagram? Variation of center-of-mass energy Way of scanning different freeze-out parameters T and μB Variation of system size How do T and μB depend on system size Core corona approach Critical point search Systematic study of multiplicity fluctuations Other observables Christoph Blume WWND 2010, Ocho Rios, Jamaica 1 QCD Phase Diagram A. Andronic et al., arXiv: 0911.4806 L. McLarren and R.D. Pisarski, Nucl. Phys. A796, 83 (2007). Christoph Blume WWND 2010, Ocho Rios, Jamaica 2 QCD Phase Diagram Experimental Access High energies (RHIC/LHC) B small System reaches QGP phase Low energies (AGS) B large System stays in hadronic phase In between (SPS/FAIR) Variation of B by changing sNN Possible to localize critical point? Other control parameters (e.g. system size)? Christoph Blume WWND 2010, Ocho Rios, Jamaica 3 Energy Dependence Net-Baryon Distributions NA49 preliminary Significant change of shape at SPS energies Peak dip structure Rapid change of net-baryon density at y = 0 Strong variation of B Central Pb+Pb/Au+Au 158A GeV E802 BRAHMS Phys. Rev. Lett. 82 (1999), 2471 Phys. Rev. C 60 (1999), 064901 Phys. Rev. Lett. 93 (2004), 102301 Christoph Blume WWND 2010, Ocho Rios, Jamaica 4 Energy Dependence Example: /π- and /π-Ratios NA49 data Phys. Rev. C78, 034918 (2008) / |y| < 0.4 Statistical models Generally good description at all energies Fixes parameters T and μB − / -/ −+/ |y| < 0.5 = 1.5 (+ + -) SHM(B): A. Andronic et al. Nucl. Phys. A 772, 167 (2006). UrQMD: M. Bleicher et al., J. Phys. G 25, 1856 (1999) and private communication HSD: E. Bratkovskaya et al., Phys. Rev. C69, 054907 (2004) Christoph Blume WWND 2010, Ocho Rios, Jamaica 5 QCD Phase Diagram Data Points F. Becattini et al., Phys Rev. C69, 024905 (2004). Results from different beam energies Analysis of particle yields with statistical models Freeze-out points reach QGP phase boundary at top SPS energies Caveat: Disagreement between different LQCD results on TC Christoph Blume WWND 2010, Ocho Rios, Jamaica 6 System Size Dependence Freeze-out Parameter How do freeze-out parameters depend on system size ? Statistical model fits result in different T Central reactions Way to move around in phase diagram? F. Becattini et al., Phys. Rev. C73, 044905 (2005) Christoph Blume WWND 2010, Ocho Rios, Jamaica 7 System Size Dependence (Anti-)Proton y-Spectra NA49 preliminary p p Preliminary data by NA49 Minimum bias Pb+Pb at 158A GeV Christoph Blume NA49 preliminary WWND 2010, Ocho Rios, Jamaica H. Ströbele et al. arXiv:0908.2777 8 System Size Dependence Net-Protons No strong system size dependence observed NA49 preliminary p-p Cen. per. Peripheral spectrum slightly more pronounced y-dependence than central one p+p Beam rapidity not measured! central In measured rapdity range similar shape like p+p data Per. NA49 preliminary ⇒ System size has no big influence on μB p+p Data: M. Aguilar-Benitz et al., Z. Phys. C 50 (1991), 405. Christoph Blume WWND 2010, Ocho Rios, Jamaica 9 System Size Dependence Enhancement factors of , , and Enhancement factor p+p data: NA49 1 dn Pb Pb E Nw dy y 0 1 dn p p 2 dy y 0 Early saturation Nw > 60 Pb+Pb Core Corona Model f (NW ) = fraction of nucleons that scatter more than once C+C M NW NW f NW MCore 158A GeV 1 f NW MCorona Si+Si F. Becattini and J. Manninen, J. Phys. G35, 104013 (2008) K. Werner, Phys. Rev. Lett. 98, 152301 (2007) J. Aichelin and K. Werner, arXiv:0810.4465 Christoph Blume WWND 2010, Ocho Rios, Jamaica 10 System Size Dependence Average Transverse Mass: mt-m0 Similar dependence as for multiplicities observed |y| < 0.4 (0.5) Early saturation Nw > 60 Core Corona model f(NW ) = fraction of nucleons, that scatter more than once mt N W N W f N W mt Core 1 f N W mt Corona F. Becattini and J. Manninen, J. Phys. G35, 104013 (2008) K. Werner, Phys. Rev. Lett. 98, 152301 (2007) J. Aichelin and K. Werner, arXiv:0810.4465 NA49 data: Phys. Rev. C80 (2009), 034906. Christoph Blume WWND 2010, Ocho Rios, Jamaica 11 System Size Dependence Core-Corona: Central ↔ Peripheral Core Corona model f(Npart) = fraction of nucleons, that scatter more than once Centrality dependence Stronger for smaller systems Central reactions Still clear change of fmax with system size Compare fmax(Pb+Pb) ≈ 0.9 and fmax(C+C) ≈ 0.65 ⇒ apparent change of T + μB Not real, just different mixture of core and corona Thanks to K. Reygers for providing the Glauber code Christoph Blume System size is not a good control parameter to move around in QCD phase diagram WWND 2010, Ocho Rios, Jamaica 12 System Size Dependence Core-Corona: Asymmetric Systems Core Corona model f(Npart) = fraction of nucleons, that scatter more than once Centrality dependence Peculiar shape for small projectiles (e.g. C, O, Si, S) Limiting case: p + A f(Npart) = 1 / Npart Model applicable in p+A? First attempt in T. Šuša et al., Nucl. Phys. A698 (2002) 491c Christoph Blume WWND 2010, Ocho Rios, Jamaica 13 Critical Point Theoretical Predictions Lattice QCD difficult for B > 0 Sign problem in Fermion-determinant Progress in recent years (e.g. Fodor and Katz) Results strongly divergent Typically B > 200 MeV Perhaps no critical point at all for B < 500 MeV (de Forcrand and Philipsen) Christoph Blume M. Stephanov, CPOD conference 09 WWND 2010, Ocho Rios, Jamaica 14 Critical Point Observables Elliptic flow v2 R. A. Lacey et al., arXiv:0708.3512: η/s versus T and μB. E. Shuryak, arXiv:hep-ph/0504048: Decrease (increase) of baryon (meson) flow. Higher experimental precision required. mt-Spectra of baryons and anti-baryons Asakawa et al., Phys. Rev. Lett. 101 (2008) 122302. Higher experimental precision required. Di-pion (sigma) intermittency study T. Anticic et al., arXiv 0912.4198. No unambiguous signal seen yet Fluctuations: multiplicity and/or 〈pt〉 Stephanov, Rajagopal, Shuryak, Phys. Rev. D60 (1999), 114028. Christoph Blume WWND 2010, Ocho Rios, Jamaica 15 Critical Point Multiplicity Fluctuations Charged multiplicity n Extensive quantity tight centrality selection (1%) to reduce volume fluctuations Pb+Pb, 158A GeV 1 < y < ybeam Scaled variance Energy dependence of Data narrower than Poisson ( < 1) Trend reproduced by UrQMD Christoph Blume WWND 2010, Ocho Rios, Jamaica 16 Critical Point Multiplicity Fluctuations n-Fluctuations as a function of B B from stat. Phys. Rev. C79, model fit: Position of crit. point: Amplitude of Fluctuations: Width of crit. region: 044904 (2009) Z. Fodor and S. Katz JHEP 0404, 050 (2004) M. Stephanov et al. Phys. Rev. D60, 114028 (1999) Y. Hatta and T. Ikeda, Phys. Rev. D67, 014028 (2003) NA49 data: Christoph Blume F. Becattini et al., Phys. Rev. C73, 044905 (2006) WWND 2010, Ocho Rios, Jamaica 17 Critical Point Elliptic Flow v2 Energy dependence of v2 of protons and pions Large systematic effects Especially for proton v2! Clearly needs improvements on the experimental side Christoph Blume WWND 2010, Ocho Rios, Jamaica 18 Critical Point Theoretical Predictions Critical region Larger area in T - B plane Y. Hatta and T. Ikeda, Phys. Rev. D67, 014028 (2003) Focusing effect Proximity of critical point might influence isentropic trajectories (nB/s = const.) Askawa et al., Phys. Rev. Lett. 101, 122302 (2008) Christoph Blume WWND 2010, Ocho Rios, Jamaica 19 Critical Point mt-Spectra of Baryons and Antibaryons Expectation: B/B ratio should fall with mt Askawa et al., PRL. 101, 122302 (2008) No significant energy dependence of slope a observed K. Grebieszkov et al., Nucl. Phys. A830 (2009), 547c Christoph Blume WWND 2010, Ocho Rios, Jamaica 20 Summary How to probe different regions of the QCD phase diagram ? Variation of center-of-mass energy Good control parameter to move around in phase diagram Variation of system size Changes only relative contribution of core and pp-like corona (if core-corona ansatz holds) Change in T only apparent, μB = const. Search for critical point First results from multiplicity fluctuations negative Need for better observables Multi-dimensional (scale and pt-dependent) fluctuation studies Christoph Blume WWND 2010, Ocho Rios, Jamaica 21 Backup 22 System Size Dependence p+A Collisions No clear evidence for decrease with Npart Significant decrease visible only for anti-lambda Data not fully consistent NA57: F. Antinori et al., J. Phys. G32 (2006) 427 NA49: T. Šuša et al., Nucl. Phys. A698 (2002) 491c Christoph Blume WWND 2010, Ocho Rios, Jamaica 23 Critical Point Di-Pion (Sigma) Intermittency π+π- Pairs above di-pion threshold Factorial moments F2(M) M: Number of bins in transverse momentum space Subtract mixed event background ⇒ ΔF2(M) Search for power law behavior ΔF2(M) ∼ (M2) Φ2 Φ2 : critical exponent Φ2 > 0 for Si+Si Coulomb effects become an issue for larger systems p+p, C+C, Si+Si at 158A GeV T. Anticic et al. arXiv 0912.4198 N.G. Antoniou, F.K. Diakonos, and G. Mavromanolakis Christoph Blume WWND 2010, Ocho Rios, Jamaica 24 Critical Point pt-Fluctuations Measure of pt-fluctuations Energy dependence of pt No significant variation with sNN for central collisions Trend reproduced by UrQMD Christoph Blume WWND 2010, Ocho Rios, Jamaica 25 Critical Point pt-Fluctuations pt-Fluctuations as a function of B B from stat. Phys. Rev. C79, model fit: Position of crit. point: Amplitude of fluctuations: Width of crit. region: 044904 (2009) Z. Fodor and S. Katz JHEP 0404, 050 (2004) M. Stephanov et al. Phys. Rev. D60, 114028 (1999) Y. Hatta and T. Ikeda, Phys. Rev. D67, 014028 (2003) NA49 data: Christoph Blume F. Becattini et al., Phys. Rev. C73, 044905 (2006) WWND 2010, Ocho Rios, Jamaica 26 Critical Point System Size Dependence of n-Fluctuations Stronger n-Fluctuations seen in smaller systems F. Becattini et al., Phys. Rev. C73, 044905 (2006) Hypothetic critical point (CP2) at T = 178 MeV and B = 250 MeV Christoph Blume WWND 2010, Ocho Rios, Jamaica 27 System Size Dependence dN/dy at Mid-rapidity for Λ, Ξ, and Ω Transport models OK for − Slightly below Too low for UrQMD: H. Petersen et al. arXiv: 0903.0396 HSD: W. Cassing and E. Bratkovskaya, Phys. Rep. 308, 65 (1999) and private communication Core Corona model OK for and F. Becattini and J. Manninen, Phys. Lett. B673, 19 (2009) J. Aichelin and K. Werner, arXiv:0810.4465 Christoph Blume WWND 2010, Ocho Rios, Jamaica 28 Energy Dependence Total Multiplicities AGS NA49 Central A+A collisions RHIC Only total multiplicities (4) shown Chemical freeze-out Experimental points in T-B plane Analysis with statistical models Baryons (stopping) B Strange particles T (+ B) Phase boundary reached ? Christoph Blume WWND 2010, Ocho Rios, Jamaica 29 QCD Phase Diagram Phase Boundary for B = 0 Lattice QCD General consensus: cross over for B = 0 Critical Temperature Tc Depends on order parameter e.g. chiral condensate: l ,s or s-quark susceptibility s 2mu ,d ms ss Significant differences between collaborations (Budapest-Wuppertal, Riken-Bielefeld-Columbia “hotQCD”) Figs. and table: Budapest-Wuppertal-Group, Y. Aoki et al., arXiv:0903.4155. Christoph Blume WWND 2010, Ocho Rios, Jamaica 30 QCD Phase Diagram K. Rajagopal, MIT CPOD conference 09 Christoph Blume WWND 2010, Ocho Rios, Jamaica 31 Strangeness in Heavy Ion Reactions Statistical Models Assumption: Multiplicities are determined by statistical weights (chemical equilibrium) Grand-canonical partition function: A. Andronic, P. Braun-Munzinger, and J. Stachel, arXiv: 0812.1186 Parameters: V, T, B, (s) Allows in general excellent fits to measured multiplicities F. Becattini et al., Phys. Rev. C69, 024905 (2004) Limits of applicability ? Rare particles and low energies Christoph Blume WWND 2010, Ocho Rios, Jamaica 32 Energy Dependence K+/π+ and /π--Ratios Extended statistical model Higher mass resonances included (up to 3 GeV) Improved description of pions and thus of the K+/+-ratio Limiting temperature reached in SPS energy region Equilibration due to proximity of phase boundary? A. Andronic, P. Braun-Munzinger and J. Stachel, arXiv:0812.1186. Christoph Blume WWND 2010, Ocho Rios, Jamaica 33 Energy Dependence K+/π+-Ratio: Comparison to STAR Data STAR measurements at lower energies √sNN = 9.2 + 19.6 GeV STAR: L. Kumar et al., SQM2008 arXiv:0812.4099 Good agreement with NA49 data Christoph Blume WWND 2010, Ocho Rios, Jamaica 34