9 9 9 10 Power Taylor Maclaurin Series

Download Report

Transcript 9 9 9 10 Power Taylor Maclaurin Series

9-9/9-10: Taylor & Maclaurin Series
Objectives:
1. To represent
functions with a
power, Taylor, or
Maclaurin series
Assignment:
โ€ข P. 674-675: 5, 9, 13, 19,
21, 35, 37
โ€ข P. 685-686: 1-7 odd, 2125 odd, 37-41 odd, 47,
55, 59
โ€ข Homework Supplement
Warm Up 1
Write the 4th Maclaurin polynomial for ๐‘“ ๐‘ฅ = ๐‘’ ๐‘ฅ .
Warm Up 2
Evaluate
1 โˆ’๐‘ฅ 2
๐‘’
0
๐‘‘๐‘ฅ.
No closed-form antiderivative
Can be approximated with a seriesโ€ฆ
Objective 1
You will be able to
represent a function
with a power, Taylor, or
Maclaurin series
Exercise 1
Find the interval of convergence for
๐‘ฅ <1
Radius of
Convergence
โˆ’1 < ๐‘ฅ < 1
Interval of
Convergence
โˆž
๐‘›
๐‘ฅ
.
๐‘›=0
Exercise 2
๐‘›
Treating โˆž
๐‘ฅ
as a geometric series, find
๐‘›=0
the sum of the series in terms of ๐‘ฅ.
โˆž
๐‘ฅ๐‘›
๐‘Ÿ=๐‘ฅ
๐‘›=0
๐‘Ž=1
1
๐‘†=
1โˆ’๐‘ฅ
A Powerful Function
If we define a function
๐‘› , its
as ๐‘“ ๐‘ฅ = โˆž
๐‘ฅ
๐‘›=0
domain would be
โˆ’1 < ๐‘ฅ < 1, all the
๐‘›
values for which โˆž
๐‘ฅ
๐‘›=0
converges.
Each output value would
be the infinite sum at
each ๐‘ฅ-value in the
domain.
โˆž
๐‘ฅ๐‘›
๐‘“ ๐‘ฅ =
๐‘›=0
๐‘“ ๐‘ฅ = 1 + ๐‘ฅ + ๐‘ฅ2 + ๐‘ฅ3 + ๐‘ฅ4 + โ‹ฏ
1
๐‘“ ๐‘ฅ =
for โˆ’1 < ๐‘ฅ < 1
1โˆ’๐‘ฅ
A Powerful Function
If we define a function
๐‘› , its
as ๐‘“ ๐‘ฅ = โˆž
๐‘ฅ
๐‘›=0
domain would be
โˆ’1 < ๐‘ฅ < 1, all the
๐‘›
values for which โˆž
๐‘ฅ
๐‘›=0
converges.
Each output value would
be the infinite sum at
each ๐‘ฅ-value in the
domain.
A Powerful Function
If we define a function
๐‘› , its
as ๐‘“ ๐‘ฅ = โˆž
๐‘ฅ
๐‘›=0
domain would be
โˆ’1 < ๐‘ฅ < 1, all the
๐‘›
values for which โˆž
๐‘ฅ
๐‘›=0
converges.
Each output value would
be the infinite sum at
each ๐‘ฅ-value in the
domain.
Representing Functions as Power Series
In the previous example,
we found a function to
which the power series
converges over its
interval of convergence.
Usually, we want to do
the reverse; we want to
find a power series
representation for a
particular function.
This can be accomplished in a
variety of ways:
Manipulation of a geometric series
Algebraic processes
Operations on known series
Composition
Term-by-term differentiation
Term-by-term integration
Exercise 3
Find a power series for ๐‘“ ๐‘ฅ =
๐‘“ ๐‘ฅ =
Needs to be 1
Divide by 2
4
๐‘ฅ+2
4
,
๐‘ฅ+2
Needs to look like
centered at 0.
๐‘Ž
1โˆ’๐‘Ÿ
4
2
2
4/2
=
=
=
2 + ๐‘ฅ 2/2 + ๐‘ฅ/2 1 + ๐‘ฅ/2 1 โˆ’ โˆ’๐‘ฅ/2
Needs to be โˆ’
๐‘Ž=2
๐‘Ÿ = โˆ’๐‘ฅ/2
Exercise 3
Find a power series for ๐‘“ ๐‘ฅ =
4
,
๐‘ฅ+2
centered at 0.
4
๐‘ฅ2
๐‘ฅ3
๐‘ฅ4
๐‘“ ๐‘ฅ =
=2โˆ’๐‘ฅ +
โˆ’
+
โˆ’โ‹ฏ
๐‘ฅ+2
2
4
8
โˆ’
4
๐‘“ ๐‘ฅ =
=
๐‘ฅ+2
๐‘ฅ
2
โˆž
๐‘›=0
โˆ’
๐‘ฅ
2
๐‘ฅ
2 โˆ’
2
โˆ’
๐‘›
๐‘ฅ
2
โˆ’
๐‘ฅ
2
๐‘ฅ
๐‘Ÿ = โˆ’ <1
2
๐‘ฅ
โˆ’1 < < 1
2
โˆ’2 < ๐‘ฅ < 2
Exercise 3
Find a power series for ๐‘“ ๐‘ฅ =
๐‘“ ๐‘ฅ =
4
๐‘ฅ+2
Implies Division
4
,
๐‘ฅ+2
centered at 0.
Exercise 4
Find a power series for ๐‘“ ๐‘ฅ =
1
,
1โˆ’๐‘ฅ
centered at โˆ’1.
Exercise 5
Find a power series for ๐‘“ ๐‘ฅ =
1
,
๐‘ฅ
centered at 1.
Operations with Power Series
Besides manipulating the sum of a geometric
series, we can also use algebraic means to derive
a power series for a function.
Let ๐‘“ ๐‘ฅ =
โˆž
๐‘›=0 ๐‘Ž๐‘›
๐‘ฅ ๐‘› and ๐‘” ๐‘ฅ =
๐‘“ ๐‘ฅ =
โˆž
๐‘Ž๐‘› ๐‘˜ ๐‘› ๐‘ฅ ๐‘›
๐‘“ ๐‘˜๐‘ฅ =
1
1โˆ’๐‘ฅ
โˆž
๐‘›=0 ๐‘๐‘›
๐‘ฅ๐‘›
๐‘“ 2๐‘ฅ =
โˆž
๐‘›=0
โˆž
๐‘ฅ๐‘›
๐‘“ ๐‘ฅ =
๐‘›=0
1
1 โˆ’ 2๐‘ฅ
2๐‘› ๐‘ฅ ๐‘›
๐‘“ 2๐‘ฅ =
๐‘›=0
Operations with Power Series
Besides manipulating the sum of a geometric
series, we can also use algebraic means to derive
a power series for a function.
Let ๐‘“ ๐‘ฅ =
๐‘ฅ ๐‘› and ๐‘” ๐‘ฅ =
๐‘“ ๐‘ฅ =
โˆž
๐‘“ ๐‘ฅ๐‘ =
โˆž
๐‘›=0 ๐‘Ž๐‘›
๐‘Ž๐‘› ๐‘ฅ ๐‘›๐‘
1
1โˆ’๐‘ฅ
โˆž
๐‘›=0 ๐‘๐‘›
๐‘ฅ๐‘›
๐‘“ ๐‘ฅ2 =
โˆž
๐‘›=0
โˆž
๐‘ฅ๐‘›
๐‘“ ๐‘ฅ =
๐‘›=0
1
1 โˆ’ ๐‘ฅ2
๐‘“ ๐‘ฅ2 =
๐‘ฅ 2๐‘›
๐‘›=0
Operations with Power Series
Besides manipulating the sum of a geometric
series, we can also use algebraic means to derive
a power series for a function.
Let ๐‘“ ๐‘ฅ =
โˆž
๐‘›=0 ๐‘Ž๐‘›
๐‘ฅ ๐‘› and ๐‘” ๐‘ฅ =
โˆž
๐‘›=0 ๐‘๐‘›
๐‘ฅ๐‘›
โˆž
๐‘Ž๐‘› ± ๐‘๐‘› ๐‘ฅ ๐‘›
๐‘“ ๐‘ฅ ±๐‘” ๐‘ฅ =
๐‘›=0
See next exampleโ€ฆ
Exercise 6
Find a power series for ๐‘“ ๐‘ฅ =
3๐‘ฅโˆ’1
,
๐‘ฅ 2 โˆ’1
centered at 0.
M AT H
Use partial fraction decomposition
Term-By-Term
Lastly, we can derive a power series for a
function by term-by-term differentiation or
integration.
The radius of convergence of the series
obtained by differentiating or integrating a
power series is the same as the original series.
The interval of convergence, on the other hand, may
differ as a result of the behavior at the endpoints.
Exercise 7
Find a power series for ๐‘“ ๐‘ฅ = ln ๐‘ฅ, centered at 1.
Differentiate
Integrate
๐‘“ ๐‘ฅ = ln ๐‘ฅ
1
=
๐‘“โ€ฒ ๐‘ฅ =
๐‘ฅ
โˆž
โˆ’1
๐‘›
๐‘ฅโˆ’1
๐‘›
Check endpoints
๐‘›
Use Ratio Test to
find interval of
convergence
๐‘›=0
โˆž
๐‘“โ€ฒ ๐‘ฅ ๐‘‘๐‘ฅ =
โˆ’1
๐‘›
โˆ’1
๐‘›
๐‘ฅโˆ’1
๐‘‘๐‘ฅ
๐‘›=0
โˆž
ln ๐‘ฅ = ๐ถ +
๐‘›=0
๐‘ฅโˆ’1
๐‘›+1
๐‘›+1
Use initial condition
ln 1 = 0
Exercise 8
Use the previous power series to approximate
ln 1.1 using the 4th partial sum.
0.12 0.13 0.14
โ‰ˆ 0.0953083
0.1 โˆ’
+
โˆ’
2
3
4
Since this is an alternating series,
the error is less than (or equal to)
the first neglected term.
๐‘…4
0.15
โ‰ค
5
๐‘…4 โ‰ค 0.000002
Exercise 9
Find a power series for ๐‘“ ๐‘ฅ = arctan ๐‘ฅ, centered at
0.
Differentiate
Integrate
๐‘“ ๐‘ฅ = arctan ๐‘ฅ
1
1
๐‘“โ€ฒ ๐‘ฅ =
=
=
1 + ๐‘ฅ2
1 โˆ’ โˆ’๐‘ฅ 2
โˆž
โˆž
โˆ’๐‘ฅ 2
๐‘›=0
๐‘›
โˆ’1 ๐‘› ๐‘ฅ 2๐‘›
=
๐‘›=0
โˆž
โˆ’1 ๐‘› ๐‘ฅ 2๐‘› ๐‘‘๐‘ฅ
๐‘“โ€ฒ ๐‘ฅ ๐‘‘๐‘ฅ =
๐‘›=0
โˆž
arctan ๐‘ฅ = ๐ถ +
๐‘›=0
โˆ’1 ๐‘› ๐‘ฅ 2๐‘›+1
2๐‘› + 1
Use Ratio Test to find
interval of convergence
Use initial condition
arctan 0 = 0
Exercise 9
Find a power series for ๐‘“ ๐‘ฅ = arctan ๐‘ฅ, centered at
0.
Differentiate
Integrate
๐‘“ ๐‘ฅ = arctan ๐‘ฅ
1
1
๐‘“โ€ฒ ๐‘ฅ =
=
=
1 + ๐‘ฅ2
1 โˆ’ โˆ’๐‘ฅ 2
โˆž
โˆž
โˆ’๐‘ฅ 2
๐‘›=0
๐‘›
โˆ’1 ๐‘› ๐‘ฅ 2๐‘›
=
๐‘›=0
โˆž
โˆ’1 ๐‘› ๐‘ฅ 2๐‘› ๐‘‘๐‘ฅ
๐‘“โ€ฒ ๐‘ฅ ๐‘‘๐‘ฅ =
๐‘›=0
โˆž
arctan ๐‘ฅ = ๐ถ +
๐‘›=0
โˆ’1 ๐‘› ๐‘ฅ 2๐‘›+1
2๐‘› + 1
Check endpoints
Use initial condition
arctan 0 = 0
Convergent Power Series
If ๐‘“ is represented by a power series
๐‘›
๐‘“ ๐‘ฅ = โˆž
๐‘Ž
๐‘ฅ
โˆ’
๐‘
for all ๐‘ฅ in an open
๐‘›=0 ๐‘›
interval ๐ผ containing ๐‘, then
๐‘Ž๐‘› =
๐‘“
๐‘›
๐‘›!
๐‘
Coefficients of the Taylor polynomials
and
๐‘“โ€ฒโ€ฒ ๐‘
๐‘“ ๐‘ฅ = ๐‘“ ๐‘ + ๐‘“โ€ฒ ๐‘ ๐‘ฅ โˆ’ ๐‘ +
2!
Taylor series
๐‘ฅโˆ’๐‘
2
+ โ‹ฏ+
๐‘“
๐‘›
๐‘›!
๐‘
๐‘ฅโˆ’๐‘
๐‘›
+โ‹ฏ
If a power
series
converges,
then it is a
Taylor series.
Definition of Taylor Series
If a function ๐‘“ has derivatives at all orders at
๐‘ฅ = ๐‘, then the series
โˆž
๐‘“
๐‘›
๐‘
๐‘›!
๐‘›=0
๐‘ฅโˆ’๐‘
๐‘›
๐‘“โ€ฒโ€ฒ ๐‘
= ๐‘“ ๐‘ + ๐‘“โ€ฒ ๐‘ ๐‘ฅ โˆ’ ๐‘ +
2!
๐‘ฅโˆ’๐‘
2
+โ‹ฏ
is called the Taylor series for ๐‘“ ๐‘ฅ at ๐‘. If ๐‘ = 0, then
โˆž
๐‘›=0
๐‘“
๐‘›
๐‘›!
0
๐‘ฅ๐‘›
๐‘“โ€ฒโ€ฒ 0 2
= ๐‘“ 0 + ๐‘“โ€ฒ 0 ๐‘ฅ +
๐‘ฅ +โ‹ฏ
2!
is called the Maclaurin series for ๐‘“ ๐‘ฅ .
Essentially, a
Taylor
polynomial is a
partial sum of a
Taylor series.
Making Taylor Series
Take lots
of
derivatives
of ๐‘“ ๐‘ฅ
1
๐‘“
5
0 =1
๐‘“
4
0 =1
๐‘“โ€ฒโ€ฒโ€ฒ 0 = 1
๐‘“โ€ฒโ€ฒ 0 = 1
Find a
pattern to
write the
๐‘›th term
3
๐‘“โ€ฒ 0 = 1
๐‘“ ๐‘ฅ = ๐‘’๐‘ฅ
๐‘“ 0 =1
๐‘“โ€ฒ ๐‘ฅ = ๐‘’ ๐‘ฅ
๐‘“โ€ฒโ€ฒ ๐‘ฅ = ๐‘’ ๐‘ฅ
๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ = ๐‘’ ๐‘ฅ
๐‘“
4
๐‘’๐‘ฅ
๐‘ฅ =
๐‘“
5
๐‘ฅ = ๐‘’๐‘ฅ
Evaluate
said
derivatives
at ๐‘
2
๐‘ฅ2 ๐‘ฅ3 ๐‘ฅ4
๐‘“ ๐‘ฅ = 1+๐‘ฅ+ +
+
+โ‹ฏ
2! 3! 4!
โˆž
๐‘“ ๐‘ฅ =
๐‘›=0
๐‘ฅ๐‘›
๐‘›!
Determine
the interval
of
convergence
4
Ratio Test
Exercise 10
Write the Maclaurin series for ๐‘“ ๐‘ฅ = sin ๐‘ฅ.
๐‘“ ๐‘ฅ = sin ๐‘ฅ
๐‘“ 0 =0
๐‘“โ€ฒ ๐‘ฅ = cos ๐‘ฅ
๐‘“โ€ฒ 0 = 1
๐‘“โ€ฒโ€ฒ ๐‘ฅ = โˆ’ sin ๐‘ฅ
๐‘“โ€ฒโ€ฒ 0 = 0
๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ = โˆ’cos ๐‘ฅ
๐‘“ โ€ฒโ€ฒโ€ฒ 0 = โˆ’1
๐‘“
4
๐‘ฅ = sin ๐‘ฅ
๐‘“
4
0 =0
๐‘“
5
๐‘ฅ = cos ๐‘ฅ
๐‘“
5
0 =1
๐‘“
6
๐‘ฅ = โˆ’sin ๐‘ฅ
๐‘“
6
0 =0
โ‹ฎ
โ‹ฎ
Exercise 10
Write the Maclaurin series for ๐‘“ ๐‘ฅ = sin ๐‘ฅ.
๐‘“ 0 =0
๐‘“โ€ฒ 0 = 1
๐‘“โ€ฒโ€ฒ 0 = 0
๐‘“ โ€ฒโ€ฒโ€ฒ 0 = โˆ’1
๐‘“
4
๐‘“
5
0 =1
๐‘“
6
0 =0
0 2 1 3 0 4 1 5 0 6
๐‘“ ๐‘ฅ = 0 + 1๐‘ฅ + ๐‘ฅ โˆ’ ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + โ‹ฏ
2!
3!
4!
5!
6!
1 3 1 5 1 7 1 9
๐‘“ ๐‘ฅ =๐‘ฅโˆ’ ๐‘ฅ + ๐‘ฅ โˆ’ ๐‘ฅ + ๐‘ฅ โˆ’โ‹ฏ
7!
9!
3!
5!
0 =0
โ‹ฎ
โˆž
๐‘“ ๐‘ฅ =
๐‘›=0
โˆ’1 ๐‘› 2๐‘›+1
๐‘ฅ
2๐‘› + 1 !
Use the Ratio Test to
determine the interval
of convergence
Exercise 10
Write the Maclaurin series for ๐‘“ ๐‘ฅ = sin ๐‘ฅ.
๐‘“ 0 =0
๐‘“โ€ฒ 0 = 1
๐‘“โ€ฒโ€ฒ 0 = 0
๐‘“ โ€ฒโ€ฒโ€ฒ 0 = โˆ’1
๐‘“
4
๐‘“
5
0 =1
๐‘“
6
0 =0
0 2 1 3 0 4 1 5 0 6
๐‘“ ๐‘ฅ = 0 + 1๐‘ฅ + ๐‘ฅ โˆ’ ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + ๐‘ฅ + โ‹ฏ
2!
3!
4!
5!
6!
1 3 1 5 1 7 1 9
๐‘“ ๐‘ฅ =๐‘ฅโˆ’ ๐‘ฅ + ๐‘ฅ โˆ’ ๐‘ฅ + ๐‘ฅ โˆ’โ‹ฏ
7!
9!
3!
5!
0 =0
โ‹ฎ
โˆž
๐‘“ ๐‘ฅ =
๐‘›=0
โˆ’1 ๐‘› 2๐‘›+1
๐‘ฅ
2๐‘› + 1 !
โˆ’โˆž < ๐‘ฅ < โˆž
Exercise 10
Write the Maclaurin series for ๐‘“ ๐‘ฅ = sin ๐‘ฅ.
Exercise 11
Find the Maclaurin series ๐‘“ ๐‘ฅ = sin ๐‘ฅ 2 .
Exercise 12
Find the Maclaurin series ๐‘“ ๐‘ฅ = cos ๐‘ฅ.
Exercise 13
Find the Maclaurin series ๐‘“ ๐‘ฅ = ๐‘’ ๐‘ฅ .
Exercise 14
Find the Maclaurin series ๐‘“ ๐‘ฅ = ๐‘’
โˆ’๐‘ฅ 2
.
Exercise 15
1 โˆ’๐‘ฅ 2
๐‘’
0
Approximate
๐‘‘๐‘ฅ using a power series
with an error of less than 0.01.
Exercise 16
Find the first three nonzero terms in each of
the Maclaurin series.
1. ๐‘’ ๐‘ฅ arctan ๐‘ฅ
Exercise 16
Find the first three nonzero terms in each of
the Maclaurin series.
1. ๐‘’ ๐‘ฅ arctan ๐‘ฅ
Exercise 16
Find the first three nonzero terms in each of
the Maclaurin series.
2. tan ๐‘ฅ
Exercise 16
Find the first three nonzero terms in each of
the Maclaurin series.
2. tan ๐‘ฅ
9-9/9-10: Taylor & Maclaurin Series
Objectives:
1. To represent
functions with a
power, Taylor, or
Maclaurin series
Assignment:
โ€ข P. 674-675: 5, 9, 13, 19,
21, 35, 37
โ€ข P. 685-686: 1-7 odd, 2125 odd, 37-41 odd, 47,
55, 59
โ€ข Homework Supplement