Physics 321 Hour 28 Extended Object: Angular Momentum and the Inertia Tensor
Download
Report
Transcript Physics 321 Hour 28 Extended Object: Angular Momentum and the Inertia Tensor
Physics 321
Hour 28
Extended Object: Angular Momentum and
the Inertia Tensor
Bottom Line
β’ Angular Momentum and Angular Velocity
πΏ = πππ 2 β ππ π β π
β’ Therefore πΏ = πΌπ is not always valid.
β’ We can write πΏ = ππ where π is the inertia tensor:
πΌπ₯π₯
π = πΌπ₯π¦
πΌπ₯π§
πΌπ₯π¦
πΌπ¦π¦
πΌπ¦π§
πΌπ₯π§
π½π¦π¦ + π½π§π§
πΌπ¦π§ =
βπ½π₯π¦
πΌπ§π§
βπ½π₯π§
π½π₯π¦ =
βπ½π₯π¦
π½π§π§ + π½π₯π₯
βπ½π¦π§
π₯π¦πππ
βπ½π₯π§
βπ½π¦π§
π½π₯π₯ + π½π¦π¦
Center of Mass
β’ Center of mass
πβ²
cm
ππ
=
π
π
=
πππ =
βππ ππ
ππππ
β’ A useful result:
ππ
= ππππβ² = π
πππβ²+ πβ²πππβ² = ππ
+ πβ²πππβ²
β
πβ²πππβ² = 0
More Conclusions
ππ‘ππ‘ππ = ππ
πΏπ‘ππ‘ππ
πΉπ‘ππ‘ππ = ππ
= πΏππ + πΏππππ’π‘ ππ
A Little Math
β’ Angular Momentum and Angular Velocity
πΏ = π Γ π = ππ Γ π£ = ππ Γ π£β₯
where π£β₯ is the component of π£ perpendicular to π
= ππ Γ π Γ π
= πππ 2 β ππ π β π
βπβ₯ βπ
βπ
π
βπβ₯ = πβπ
βπβ₯ πβπ
=
βπ‘
βπ‘
π£β₯= ππ
π£β₯ = π Γ π
A Little Math
In the instantaneous rotation of a solid body about an
axis, π£ is always perpendicular to π so π£β₯ = π£.
A Little Math
β’ Angular Momentum and Angular Velocity
πΏ = π Γ π = ππ Γ π Γ π
= πππ 2 β ππ π β π
β’ Conclusions:
β’ πΏ is perpendicular to π, but not necessarily parallel
to π.
β’ Therefore πΏ = πΌπ is not always valid.
β’ If π is perpendicular to π:
πΓπ£
π= 2
π
An Example
y
x
Find vectors about the origin:
π = ππ§ π = βππ¦
π£ = π Γ π = πππ₯
πΏ = π Γ ππ£ = ππ2 ππ§
πΏ = πΌπ πΌ = ππ2
Ξ=πΓπΉ =0
y
Another Example
x
Find vectors about the origin:
π = π π§ π = π§π§ β π π¦
π£ = π Γ π = πππ₯
πΏ = π Γ ππ£ = ππ2 ππ§ + πππ§ππ¦
πΏ β πΌπ
Ξ=πΓπΉ β 0
Cross Products and the Antisymmetric Tensor
πΆ =π΄Γπ΅
3
πΆπ =
ππππ π΄π π΅π
π,π=1
ππππ
0 ππ πππ¦ πππππ₯ ππ ππππππ‘ππ
+1 ππ πππ ππ ππ¦ππππ
=
β1 ππ πππ ππ πππ‘πππ¦ππππ
Angular Momentum of a Point Mass II
πΏ = π Γ π = ππ Γ π Γ π
3
πΏπ =
ππππ πππ π Γ π
π
π,π=1
3
=
3
ππππ πππ
π,π=1
πππβ²πβ² ππβ² ππβ²
πβ²,πβ²=1
πΏπ =
ππππ πππβ²πβ² πππ ππβ² ππβ²
πβ²
π,π,πβ²
πππβ²
The Inertia Tensor of a Point Mass I
πΏ = ππ
πππβ² =
ππππ πππβ²πβ² πππ ππβ²
π,π,πβ²
π12 =
π1ππ ππ2πβ² πππ ππβ² = π123 π321 ππ2 π1 = βππ¦π₯
π,π,πβ²
π11 =
π1ππ ππ1πβ² πππ ππβ² = π132 π213 ππ3 π3
π,π,πβ²
π123 π312 ππ2 π2 = ππ¦ 2 + ππ§ 2 = π π 2 β π₯ 2
The Inertia Tensor of a Point Mass II
πΏ = ππ
π(π 2 β π₯ 2 )
π=
βππ¦π₯
βππ§π₯
βππ₯π¦
π(π 2 β π¦ 2 )
βππ§π¦
βππ₯π§
βππ¦π§
π(π 2 β π§ 2 )
The Inertia Tensor of an Extended Object
πΏ = ππ
π½π₯π¦ =
πΌπ₯π₯
π = πΌπ₯π¦
πΌπ₯π§
πΌπ₯π¦
πΌπ¦π¦
πΌπ¦π§
π₯π¦πππ
πΌπ₯π§
π½π¦π¦ + π½π§π§
πΌπ¦π§ =
βπ½π₯π¦
πΌπ§π§
βπ½π₯π§
1
π = πβπβπ
2
βπ½π₯π¦
π½π§π§ + π½π₯π₯
βπ½π¦π§
βπ½π₯π§
βπ½π¦π§
π½π₯π₯ + π½π¦π¦