Physics 321 Hour 12 Driven Harmonic Oscillators

Download Report

Transcript Physics 321 Hour 12 Driven Harmonic Oscillators

Physics 321
Hour 12
Driven Harmonic Oscillators
Bottom Line
β€’ Starting from rest, the system tries to oscillate at the
natural frequency
β€’ In time, it oscillates at the driving frequency
β€’ The equation for a driven, damped oscillator:
π‘₯ + 2𝛽π‘₯ + πœ”0
2π‘₯
𝐹(𝑑)
=
≑ 𝑓0 cos πœ”π‘‘
π‘š
β€’ The steady state solution is:
π‘₯ 𝑑 = 𝐴 cos(πœ”π‘‘ βˆ’ 𝛿)
β€’ FWHM of the resonance curve is approximately 2Ξ²
Driven Oscillator
2
The equation: π‘₯ + 2𝛽π‘₯ + πœ”0 π‘₯ =
𝐹(𝑑)
π‘š
≑ 𝑓(𝑑)
Let 𝑓 𝑑 = 𝑓0 cos πœ”π‘‘
The oscillator wants to oscillate at πœ”0 but the
driver forces it to oscillate at πœ”. This leads to
transient vs steady state behavior!
Example
Driven_Osc.nb
Driven Oscillator
π‘₯ + 2𝛽π‘₯ + πœ”02 π‘₯ = 𝑓0 cos πœ”π‘‘
We assume a solution something like
π‘₯ 𝑑 = 𝐴 cos(πœ”π‘‘ βˆ’ 𝛿)
But π‘₯(𝑑) = βˆ’π΄πœ” sin(πœ”π‘‘ βˆ’ 𝛿)
So we employ a trick…
The driving force is the real part of
𝑓0 𝑒 π‘–πœ”π‘‘
Driven Oscillator
𝑧 + 2𝛽 𝑧 + πœ”02 𝑧 = 𝑓0 𝑒 π‘–πœ”π‘‘
We assume a solution of the form
𝑧 𝑑 = 𝐴𝑒 βˆ’π‘–π›Ώ 𝑒 π‘–πœ”π‘‘ = 𝐢𝑒 π‘–πœ”π‘‘
This gives:
(βˆ’πœ”2 + 2π‘–π›½πœ” + πœ”02 )𝐢𝑒 π‘–πœ”π‘‘ = 𝑓0 𝑒 π‘–πœ”π‘‘
𝑓0
𝐢= 2
πœ”0 βˆ’ πœ” 2 + 2π‘–π›½πœ”
Driven Oscillator
Conclusion 1:
2
𝑓0
|𝐢| = 𝐴 =
(πœ”02 βˆ’ πœ” 2 )2 +4𝛽 2 πœ” 2
2
2
Driven Oscillator
(βˆ’πœ”2 + 2π‘–π›½πœ” + πœ”02 )𝐴𝑒 βˆ’π‘–π›Ώ 𝑒 π‘–πœ”π‘‘ = 𝑓0 𝑒 π‘–πœ”π‘‘
(βˆ’πœ”2 + 2π‘–π›½πœ” + πœ”02 )𝐴 = 𝑓0 𝑒 𝑖𝛿
πœ”02 βˆ’ πœ”2 𝐴 + 2π‘–π›½πœ”π΄ = 𝑓0 cos 𝛿 + 𝑖𝑓0 sin 𝛿
Real parts: πœ”02 βˆ’ πœ”2 𝐴 = 𝑓0 cos 𝛿
Imaginary parts: 2π›½πœ”π΄ = 𝑓0 sin 𝛿
𝑓0 sin 𝛿
2π›½πœ”
tan 𝛿 =
= 2
𝑓0 cos 𝛿 πœ”0 βˆ’ πœ” 2
Driven Oscillator
Conclusion 2:
2π›½πœ”
tan 𝛿 = 2
πœ”0 βˆ’ πœ” 2
And finally the steady state solution is:
π‘₯ 𝑑 = 𝐴 cos(πœ”π‘‘ βˆ’ 𝛿)