Transcript DPRoy
SUSY Search at Future Collider and Dark Matter Experiments D. P. Roy Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai – 400088, India & Instituto de Fisica Corpuscular, CSIC-U. de Valencia Valencia, Spain Outline • SUSY : Merits & Problems • Nature of LSP : Bino, Higgsino or Wino • DM Constraints on Bino, Higgsino & Wino LSP Scenarios ( mSUGRA & mAMSB Models) • Bino LSP Signals at LHC • Higgsino & Wino LSP Signals at CLIC • Bino, Higgsino & Wino LSP Signals in DM Expts • Nonminimal Models for Higgsino, Wino & Bino LSP WHY SUSY : A. Natural Soln to the Hierarchy Problem of EWSB B. Natural (Radiative) Mechanism for EWSB C. Natural Candidate for the cold DM (LSP) D. Unification of Gauge Couplings @ GUT Scale PROBLEMS WITH SUSY : 1. Little Hierarchy Problem 2. Flavour & CP Viol. Problem h μ t ~ t mh > 114 GeV (LEP) m ~t > 1 TeV Split SUSY solves 2 at the cost of aggravating1. m ~f 1TeV No ( A & B ) m ,o 1TeV C & D γ e ~ γ e~ e ,e e 0 de m~ ,e 10 TeV m ~e 10 TeV ( m~ m~e ) ( , A 10 We shall consider a more moderate option, allowing m ~f 10 100 TeV 2 ) Nature of the Lightest Superparticle (LSP) in the MSSM: Astrophysical Constraints Colourless & Chargeless LSP Direct DM Detection Expts LSP not Sneutrino LSP 0 1 ~ ~ ~ ~ c 1 B c 2W c 3 H d c 4 H u ~ ~ ~ ~ ~ Diagonal elements : M1, M 2, ±μ in the basis B , W & H 1, 2 H d H u Nondiagonal elements < MZ Exptl Indications M1, M 2, μ > 2MZ in mSUGRA Exception : Mii ≈ Mjj tan 2θij = 2Mij / (Mii – Mjj) large ~ ~ ~ B , W or H ~ ~ ~ ~ B H ,W H “Well-tempered Neutralino Scenario” Arkani-Hamed, Delgado & Giudice DM Relic Density Constraints on Bino, Higgsino & Wino LSP Scenarios mSUGRA: SUSY Br in HS communicated to the OS via grav. Int. m0 , m ½ , tanβ, A0 , sign (μ) at GUT scale ( A0 = 0 & +ve μ) ~ B : M 1 ( 1 / G ) m 1 / 2 RGE ( Weak Sc masses) ~ 0 . 4 m 1 / 2 & W : M 2 ( 2 / G ) m 1 / 2 0 . 8 m 1 / 2 Imp Weak Sc Scalar mass MHu EWSB M 2 2 Z /2 M 2 Hd tan || RGE: M 2 Hu M 2 2 Hu tan 1 2 M 2 Hu (LEP) C 1 ( i , h t , tan ) m 0 C 2 ( i , h t , tan ) m 1 / 2 2 2 2 Hyperbolic Br (tan β > 5) of μ 2 : @ tan 5 ~ m 0 m 1 / 2 M 1 B LSP ~ m 0 m 1 / 2 M 1 H LSP Chattopadhyay et al m0 ~ m1/2 TeV (Bino LSP) mh > 115 GeV m1/2 > 400 GeV (M1>2MZ) also large sfermion mass Bino does not carry any gauge charge Pair annihilate via sfermion exch ~ f B ~ f ~ B f Large sfermion mass too large Ωh2 Except for the stau co-ann. region m ~ m B~ ~ ~ B ~ H LSP Re s. Ann FP ~ CA ~ ~ ~ CoAnn : m~ M 1 ( within 10 %) ~ ~ Focus Pt : M 1 ( B H ) ~ H LSP : M ~ ~ c 1 B c 2W c 3 H d c 4 H u ~ ,0 H 1TeV ( m m 0 7 TeV ) Re s . Ann : M f Z ~ H ~0 H A 2M 1 f A f f g Z c 3 c 4 f g A , g H c1, 2 c 3 , 4 2 W f 2 Wino LSP (mAMSB model) SUSY braking in HS in communicated to the OS via the Super-Weyl Anomaly Cont. (Loop) M Ay g g y y m3/2 M 1 2 m 3 / 2 & m 33 2 5 16 2 2 g1 2 m3/2 , M 2 g2 16 2 m3/2 , M 3 3 g3 16 2 1 2 g y m 3 / 2 m 0 4 g y m3/2 , m0 , tan β, sign (μ) RGE M1 : M2 : |M3| ≈ 2.8 : 1 : 7.1 including 2-loop conts 2 m3/2 Chattopadhyay et al ~0 ~0 W (H ) W ~ ~ W (H ) W ~0 ~0 W (H ) ~ ~ W (H ) f W f ~0 ~0 W (H ) ~ ~ W LSP : M 2 2 . 1 0 . 2TeV & H LSP : 1TeV ( m 10 30 TeV ) Robust results, independent of other SUSY parameters (Valid in any SUSY model with Wino(Higgsino) LSP) Bino LSP Signal at LHC : ~ ~ ~ ~ q q q q jj T ; g g q q q q jjjj T Canonical Multijet + Missing-ET signal with possibly additional jets (leptons) from cascade decay (Valid through out the Bino LSP parameter space, including the Res.Ann Region) Focus Point Region: M 2 Hu m 0 (3 / 2 ) y t m 0 C 2 m1 / 2 m 0 2 m1 / 2 M 2 2 2 2 2 2 2 Z /2 2 2 /3 m 0 m 1 / 2 small M 1 m ~t m 0 y t m 0 Cm 1 / 2 (1 / 3 ) m 0 Cm 1 / 2 ; m u~ , d~ m 0 Cm 1 / 2 1 2 Inverted Hierarchy 2 2 2 2 2 2/3 m 0 2 TeV , m 1 / 2 0 . 5TeV & tan 10 m g~ 1 . 3TeV , m ~t 1 . 5TeV , m u~ , d~ 2 . 2 TeV 1 ~ t1 0 ~ g t t i , t b j 2 b 2W ... g~ g~ 4 b 4W ( leptons ) T 2 2 2 Focus Pt SUSY Signal at LHC Chattopadhyay et al 4 b jets T (1 4 ) l ~ Guchait & Roy Co-annihilation region m ~1 m μ >0 1 ~1 , ~1 BR ≈ 1 BR = 1 τ is soft, but Pτ≈+1 μ<0 One can use Pτ to detect the Soft τ coming from ~1 . ~ ~ W1 1 , Z 1 R p p jet s : 1-prong hadronic τ decay (BR≈0.5) 0 jet With pT > 20 GeV cut for the τ-jet the τ misid. Probability from QCD jets goes down from 6% for R > 0.3 (pTπ±> 6 GeV) to 0.25% for R > 0.8 (pTπ± > 16 GeV), while retaining most Of the signal. Chottopadhyay et al Higgsino & Wino LSP Signals at CLIC: ,Z q q ; m m m 0 ~ ~ 10 ( 0 . 2 ) GeV H (W ) π± are too soft to detect at LHC without any effective tag Must go to an e+e- Collider with reqd. beam energy (CLIC) Chen, Drees, Gunion χ+ e+ W,B e- ν e+ W χ- γ ν e- ~ ~ OPAL (LEP) m 90 GeV ( H & W ) 10 , M rec s (1 2 E / s) 1/ 2 2m γ min e e e e : E T s sin min E T 50 (100 ) GeV 1( 2 ) 3 TeV χ± decay tracks : Δm < 1 GeV χ± and /or decay π± track with displaced vertex in MVX Δm > 1 GeV 2 prompt π± tracks (Used by OPAL to beat ννγ background) Higgsino LSP Signal at 3 TeV CLIC : mχ = μ ≈ 1 TeV e+ e- χ+ W,B γ ν e+ W χ- ν eγ Luminosity = 103 ev/fb # ev 106 S B S B 1 S & 1000 1 50 & 1 B S 1( LEP ) B 103 (χ± decay π± tracks) Polarized e- (80% R) & e+ (60% L) beams : e L e R 2 % Pr obability ( 25 % Unpolarize d ) Suppression of Bg by 0.08 & Sig by 0.8 Increase of S/B by ~ 10 # ev 104 E T 100 GeV 102 S B 1 50 & S B 3 Prompt π± tracks in the Background from Beamstrahlung e+ e- χ+ W,B γ χ e+ π+ ν γ γ χ- χ πe- Beamstrahlung Bg f ≈ 0.1: S B 3 S π+ W π ν γ 10 fB Size of fB present for Mrec < 2 TeV Estimate of fB for Mrec > 2 TeV Any Excess over this Estimate χ signal & χ mass Wino LSP Signal at 5 TeV CLIC : mχ = M2 ≈ 2 TeV e+ e- χ + χ π+ W ν e+ W χ- χ π- γ e- ν γ Both Wino Signal and Neutrino Bg couple only to e-L & e+R. One can not suppress Bg with polarized beams. But one can use polarized beams to increase both Signal and Bg rates. Polarized e-L (80%) & e+R (60%) Probability of e-Le+R = 72% (25% Unpolarized) Increase of Signal and Bg rates by factors of 72/25 ≈ 3. Bg effectively suppressed due to a robust prediction of charged and neutral wino mas diff. Δm ~ W ~ W γ, Z ~ W Δm = 165 – 190 MeV for M2 ≈ 2 TeV & μ > M2 cτ = 3-7 cm (SLD MVX at 2.5 cm 2 cm at future LC) ~ Tracks of W as 2 heavily ionising particles along with their decay π± tracks. Discovery potential is primarily determined by the number of Signal events. # ev 103 Sig ~ 100 (300) events with Unpolarized (polarized) beams 102 The recoiling mass Mrec > 2mχ helps to distinguish Sig from Bg & to estimate mχ . Bino, Higgsino & Wino LSP Signals in Dark Matter Detection Expts 1. Direct Detection (CDMS, ZEPLIN…) χ Ge H ~ ~ ~ ~ c 1 B c 2W c 3 H d c 4 H u g Z c 3 c 4 & g H c1 , 2 c 3 , 4 2 2 ~ Best suited for Focus pt. region ~ Less for ~ co-ann & res.ann regions B ~ ~ Unsuited for H & W (Suppressed both by Hχχ coupling and large χ mass) χ ~ B H Spin ind. Ge 2. Indirect Detection via HE ν from χχ annihilation in the Sun (Ice Cube,Antares) χ p Z Spin dep. χ p R p g Z ( c 3 c 4 ) ~ ~ OKfor mixed ( B H ) Foc . Pt ~ ~ ~ ~ ~ 0 for B , W & H H d H u ann . R trap 2 2 2 2 3. Detection of HE γ Rays from Galactic Centre in ACT (HESS,CANGAROO,MAGIC,VERITAS) W χ χ+ Wπ0sγs χ W χ W W vσWW ~ 10-26 cm3/s Cont. γ Ray Signal (But too large π0γ from Cosmic Rays) γ W χ+ χ ~ ~ H &W γ(Z) vσγγ~ vσγZ ~ 10-27-10-28 cm3/s Discrete γ Ray Line Signal (Eγ ≈ m χ) (Small but Clean) γ flux coming from an angle ψ wrt Galactic Centre ( ) N v 4 m 2 2 dl ( ) ; N 2 ( ),1( Z ) LS DMenergy density ( ) 1 . 87 10 J ( ) (l ) 14 ( N v / 10 28 1 cm s )( 1TeV / m ) J ( ) cm 3 2 2 1 s sr 1 ( l ) dl /[( 0 . 3GeV / cm ) 8 . 5 kpc ] 2 LS 3 2 ∫ΔΩ=0.001srJ(0)dΩ ≈ 1 sr (Cuspy:NFW), 103 (Spiked), 10-3 (Core) mSUGRA ∫ΔΩ=0.001srγ dΩ (NFW) Discovery limit of ACT Chattopadhyay et al mAMSB ~ W ~ H ( ) d ( NFW ) 0 . 001 Discovery limit of ACT Chattopadhyay et al HESS has reported TeV range γ rays from GC. But with power law energy spec SNR Formidable Bg to DM Signal. The source could be GC (Sgr A*) or the nearby SNR (Sgr A east) within its ang. res. Better energy & angular resolution to extract DM Signal from this Bg. 1) Higgsino, Wino & Bino LSP in nonminimal SUSY models ~ H LSP in SUGRA models with nonuniversal 1)scalar & 2)gaugino masses m 2 Hu m 2 0 Hu 3 y t m 0 ~t C 2 m 1 / 2 M 2 2 2 2 2 2 Z /2 2/3 m 0 Hu m 0 ~t m 0 m 0 2 m 1 / 2 M Z / 2 M 1 @ m 0 m 1 / 2 2 2 2 2 2 2 But : m 0 Hu 3 m 0 2 m 0 2 m 1 / 2 M ~ J.Ellis et al,…. H LSP 2 2 2 2 2 2 2 Z / 2 M 1 @ m 0 m1 / 2 2) M G i M i FS M ij i j ; i & j 1, 2 , 3 Pl SU ( 5 ) : F S 24 24 1 24 75 200 F S 1 M 1 , 2 , 3 m 1 / 2 (Universal ) C 2 2 M 1 @ m 0 m 1 / 2 G F S 200 M 1 , 2 , 3 (10 , 2 ,1) m 1 / 2 C 2 1 . 4 M 1 ~ H LSP Chattopadhyay & Roy,…. G Wino LSP in 1)Nonminimal AMSB & 2)String models 1) Tree level SUSY breaking contributions to gaugino and scalar masses † M FS M ; m 2 Pl FS M FS 2 Pl * F S 1( or 24 24 F S ) M 0 @ tree level But : m 0 @ tree level ( Symm .Considerat ion ) m (tree) ~ 100 Mλ (AMSB) Giudice et al, Wells 2) String Th: Tree level SUSY breaking masses come only from Dilaton field, while they receive only one-loop contributions from Modulii fields. Assuming SUSY breaking by a Modulus field Mλ & m2 at one-loop level M2 < M1 < M3 similar to the AMSB ( Wino LSP) & m ~ 10 Mλ Brignole, Ibanez & Munoz ‘94 In these models: M ~ 2 TeV m 10 1 2 TeV W M3 = 300, 400, 500 & 600 GeV Bino LSP in Non-universal Gaugino Mass Model King, Roberts & Roy 07 Bulk annihilation region of Bino DM (yellow) allowed in Non-universal gaugino mass models Light right sleptons Even left sleptons lighter than Wino =>Large leptonic BR of SUSY Cascade deacy via Wino