Transcript Lecture 7
Lecture 7 OUTLINE • Poisson’s equation • Work function • Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret 5.1.2, 14.1-14.2; Hu 4.16 Poisson’s Equation area A Gauss’ Law: s ( x Dx) A s ( x) A DxA ( x Dx) ( x) Dx E(x+Dx) Dx s : permittivity (F/cm) : charge density (C/cm3) s d dx s EE130/230M Spring 2013 E(x) Lecture 7, Slide 2 Charge Density in a Semiconductor • Assuming the dopants are completely ionized: = q (p – n + ND – NA) EE130/230M Spring 2013 Lecture 7, Slide 3 Work Function E0: vacuum energy level FM: metal work function EE130/230M Spring 2013 FS: semiconductor work function Lecture 7, Slide 4 Metal-Semiconductor Contacts There are 2 kinds of metal-semiconductor contacts: • rectifying “Schottky diode” • non-rectifying “ohmic contact” EE130/230M Spring 2013 Lecture 7, Slide 5 Ideal M-S Contact: FM < FS, p-type p-type semiconductor Band diagram instantly after contact formation: Equilibrium band diagram: Schottky Barrier Height: F Bp EG F M FBp qVbi = FBp– (EF – Ev)FB W EE130/230M Spring 2013 Lecture 7, Slide 6 Ideal M-S Contact: FM > FS, p-type p-type semiconductor Band diagram instantly after contact formation: Equilibrium band diagram: EE130/230M Spring 2013 Lecture 7, Slide 7 Ideal M-S Contact: FM < FS, n-type Band diagram instantly after contact formation: Equilibrium band diagram: EE130/230M Spring 2013 Lecture 7, Slide 8 Ideal M-S Contact: FM > FS, n-type Band diagram instantly after contact formation: Equilibrium band diagram: qVbi = FBn– (Ec – EF)FB n Schottky Barrier Height: FBn FM W EE130/230M Spring 2013 Lecture 7, Slide 9 Effect of Interface States on FBn • Ideal M-S contact: FBn = FM – • Real M-S contacts: A high density of allowed energy states in the band gap at the M-S interface “pins” EF to be within the range 0.4 eV to 0.9 eV below Ec FM FBn EE130/230M Spring 2013 Lecture 7, Slide 10 Schottky Barrier Heights: Metal on Si • Metal FM (eV) Er 3.12 Ti 4.3 Ni 4.7 W 4.6 Mo 4.6 Pt 5.6 FBn (eV) 0.44 0.5 0.61 0.67 0.68 0.73 FBp (eV) 0.68 0.61 0.51 0.45 0.42 0.39 FBn tends to increase with increasing metal work function EE130/230M Spring 2013 Lecture 7, Slide 11 Schottky Barrier Heights: Silicide on Si Silicide ErSi1.7 TiSi2 CoSi2 NiSi WSi2 PtSi FM (eV) 3.78 4.18 FBn (eV) 0.3 FBp (eV) 0.8 4.6 4.65 4.7 5 0.6 0.64 0.65 0.65 0.84 0.52 0.48 0.47 0.47 0.28 Silicide-Si interfaces are more stable than metal-silicon interfaces and hence are much more prevalent in ICs. After metal is deposited on Si, a thermal annealing step is applied to form a silicide-Si contact. The term metal-silicon contact includes silicide-Si contacts. EE130/230M Spring 2013 Lecture 7, Slide 12 The Depletion Approximation The semiconductor is depleted of mobile carriers to a depth W In the depleted region (0 x W ): = q (ND – NA) Beyond the depleted region (x > W ): =0 EE130/230M Spring 2013 Lecture 7, Slide 13 Electrostatics • Poisson’s equation: • The solution is: qN D x s s x qN D s W x V x ( x)dx EE130/230M Spring 2013 Lecture 7, Slide 14 Depletion Width, W qN D W x 2 V x 2K S 0 At x = 0, V = -Vbi 2 sVbi W qN D • W decreases with increasing ND EE130/230M Spring 2013 Lecture 7, Slide 15 Summary: Schottky Diode (n-type Si) metal FM > FS n-type Si Eo Si FM qVbi = FBn – (Ec – EFS)FB FBn Ec EF Depletion width Ev W EE130/230M Spring 2013 Lecture 7, Slide 16 2 sVbi W qN D Summary: Schottky Diode (p-type Si) metal FM < FS p-type Si Eo Si Ec FM EF Ev FBp qVbi = FBp– (EF – Ev)FB W EE130/230M Spring 2013 Lecture 7, Slide 17 Depletion width 2 sVbi W qN A