Transcript K. Yamamoto
International Research School and Workshop on Electronic Crystals ECRYS-2011
August 19, 2011
NONLINEAR OPTICAL STUDY OF
FERROELECTRIC ORGANIC CONDUCTORS
Kaoru Yamamoto
Institute for Molecular Science (Japan)
Collaborators
Prof. Kyuya Yakushi
Dr. Sergiy Boyko
Univ. Ontario Inst. Tech, CAN
Toyota RIKEN, Japan
Prof. Shinichiro Iwai
Tohoku Univ., Japan
Dr. Aneta A. Kowalska
Institute for Mol. Science
SHG Measurements
(JSPS Fellow)
Prof. Nobuyuki Nishi
Nagoya Inst. Tech.
SHG Measurements
SHG measurements
Ferroelectric Domain
Observation
Dr. Chikako Nakano
Institute for Mol. Science
Single Crystal Preparations
Outline
0. Introduction to Electron FerroElectricity (FE)
1. Fano-like dip-shape signal (overtone of molecular vib)
in IR spectrum of CO systems
2. FE CO revealed by Second-Harmonic Generation (SHG)
in α-(ET)2I3
3. Ferroelectric domain observation by SHG interferometry
0. Introduction
Classification of FEs in terms of source of P
p
Ba2+
Ti4+
O2-
e.g.
NaNO2
Electronic Polarization
+
-
Dipolar Polarization
+
Ionic Polarization
Nad, Monceau, Brazovskii, PRL,
2001
e.g. BaTiO4
Fe2O4: N. Ikeda et al., Nature,
2005
1. Fano-like dip-shape signal in IR spectrum of CO systems
M. Watanabe et al., JPSJ 2004
800
C=C str.
Mol. and Charge arrangements
in θ-RbZn Salt
OPTICAL CONDUCTIVITY (S/cm)
Optical conductivity spectrum of θ-(ET)2RbZn(SCN)4
Eex // a-axis
?
400
T=14 K
50
0
100K
0
130K
0
160K
0
0
180K
0
TCO~190K
0
200K
0
RT
1000
2000
3000
4000
WAVENUMBER (cm-1)
K.Yamamoto et al., Phys. Rev. B, 65, 085110 (2002).
Optical Conductivity of several CO systems
q-(ET)2TlZn(SCN)4
Optical Conductivity (arb. u.)
b’’-(ET)(TCNQ)
q-(BDT-TTP)2Cu(NCS)2
a-(ET)2I3
a’-(ET)2IBr2
1000
2000
3000
Wavenumber (cm-1)
4000
Isotope Shift Measurements
for θ-(ET)2RbZn(SCN)4
Anharmonic Electron-Molecular Vibration (EMV) Coupling
in CO Cluster Model
Diatomic Dimer Model
Adiabatic Potential
M.J. Rice, SSC, 1979.
Calculation of Dynamic Electric Susceptibility:
Higher-order perturbation effect of H’emv
(t ) H F (t )
H Helec H vib Hemv
(t ) g n Q- (t )
H emv
H F (t ) -ea 2 n F (t )
M. J. Rice, Solid State Commun. 31, 93 (1979).
g
g
total ( ) ( -ea 2) elec ( ) 1 Q ( ) elec ( )
QQ ( ) elec ( )
E
2
eg
2
elec
n
2ng n n g
2
ng 2 - 2 - 2i
g 2ng n Q- g
Q ( )
2
2
2 ng - 2i
n
g 2
QQ ( ) Eeg
n
-1
2
2
2ng n Q- g
2
2
ng - 2i
2
Calculation Results
Comparison of Experiment and Calculation
K. Yamamoto et al., to appear in PRB
Relation between Anharmonic EMV Coupling and NLO
Dip-shape signal: vibrational overtone activated by higher-order effect
of the emv coupling
Are there any physical properties connected with the overtone?
Hemv
nQ-
H F ~ nF
Formal equivalence between Q- and F
Higher-order perturbation of H’emv Overtone (Anharmonicity)
Higher-order perturbation of H’F Nonlinear Optical Properties?
2. Second-Harmonic Generation in α-(ET)2I3
Two-Dimensional 3/4 Filled Complex: α-(ET)2I3
Molecular Arrangement and Charge Ordering
Stack I
A
A’
Stack II
Stack I
C
B
a
A
C
b
Space grp.: P-1
Z = 2, (4xET mols: A,A’,B,C)
S. Katayama, A. Kobayashi,
Y. Suzumura, JPSJ (2002)
P-1 -> P1 (T<TCO).
T. Kakiuchi, H. Sawa et al., JPSJ, 2007.
Metal-Insulator Trans. (=CO)
K. Bender et al., MCLC, ’84
Nonlinear Conductivity
M. Dressel et al., J. Phys. I France, ’94
Charge Ordering
H. Seo, C. Hotta, F. Fukuyama,
Chem.Rev. ’04
Super Conductivity under uniaxial
pressure
N. Tajima et al., JPSJ, ’02
Zero-gap (Dirac-cone) state
A. Kobayashi, S. Katayama, Y.
Suzumura,
Sci. Technol. Adv. Mater., ’09
N. Tajima et al., JPSJ, ’06
Persistent Photoconductivity
N. Tajima et al., JPSJ, ’05
Photo-Induced Phase-Transition
S. Iwai et al., PRL, ’07
Physical Properties of α-(ET)2I3
10 6
K. Bender et al., MCLC 1984
Stack II
10 4
10 2
10 0
10 -2
2
1
0
-1
-2
-3
-4
-5
b
B. Rothaemel et al. PRB 1986
built-in alternation
in overlapping
Cp
1400
1200
1000
800
(N.A. Fortune et al., SSC, 1991)
5.0
A’
C
S
4.0
S = 82% Rln2
3.0
2.0
(94% Rln2 by N.A. Fortune
et al., SSC 1991)
1.0
0
0
50
100
150
200
TEMPERATURE (K)
250
300
C=C str.
IR Spectrum of α-ET2I3
OPTICA L CONDUCTIVIT Y (arb. u.)
Eex // b-axis
200
300
TCO~135 K
150
136
130
120
100
60
4.8 K
1000
2000
3000
4000
-1
WAVENUMBER (cm )
Semi-Transparent Region in
Abs Spectrum of Organic Conductors
WAVELENGTH (nm)
5000
2000
1000
600
500
400
a
B
A
C
A'
O
b
700
Eex // a
Eex // b
2000
1400
OPTICAL CONDUCTIVITY(S/cm)
-
I3
1500
1000
Intramol.
500
CT
0
0
5000
10000
15000
-1
WAVENUMBER(cm )
20000
25000
Temperature Dependence of SHG
Pulse Energy
0.1
0.3
0.5
0.8
1.0 µJ
1.0
4.0
0.5
b
0.5 mm
SH INTENSITY (arb. u.)
a
3.0
0
128
2.0
130
132
134 136
T (K)
138
140
Single
Crysta
l
TCO=135 K
1.0
Excitation (w):1400 nm
SHG (2w): 700 nm
0
0
50
100
150
200
TEMPERATURE (K)
χij(2) (2 j ; i, i) for l ()=1.4 mm
(Relative to BBO)
i,j
χij(2)
a,a a,b b,a b,b
21 8.5 44 31
K. Yamamoto et al., JPSJ, 2008
Stack I
Stack II
Stack I
+e
+e
A
+e
B
+e
A
A
B
B
+e
A’
+e
C
+e
Electric Dipole
A’
A’
+e
C
a
b
+e
C
3. Domain observation by means of SHG interferometry
Visualization of FE Domains by SHG Interferometry
Excitation (ω) Dipole Moment
SHG (2ω)
There is a phase shift between
SH waves from different domains
Sample [α-(BEDT-TTF)22I33]
Reference
(Single Domain)
Interference of SH Lights
SHG Contrast Image
Excitation (ω)
Scanning
Mirrors
PCControlled
Cryostat & Stage
Cooled PMT
fs Er-doped
Fiber Laser
Chopper
Objective
Lens
Filters
DCPreamp
Lock-in
Sapphire Cell
Reference
(Single Domain)
PC
SHG Interference Image of Ferroelectric Domains
T=140 K(> TCO)
T=100 K(< TCO)
SH INTENSITY
Transmission Image
a
b
Eex// a-axis
0.5 mm
a
b
100 μm
• SHG image splits into bright and dark regions for T < TCO
→ Generation of ferroelectric domains
• Growth of large domains
→ P is cancelled by residual charge carriers
K. Yamamoto et al., APL, 2010.
Constructive and Destructive Interference of SHG
0.5
SH INTENSITY
SH Intensity (arb. units)
1.0
a
b
100 μm
0
40
60
80
100
120
140
160
Temperature (K)
K. Yamamoto et al., APL, 2010.
Variation of Domain Structure
a
b
200 μm
Domain walls are shifted when crystal is annealed above TCO
→ Domains are mobile!!
(though we have not succeeded in control by electric fields)
Summary
1. Dip-shape anomaly in IR spectrum:
▬ assigned to the overtone of molecular vibrations
▬ The activation is attributed to the anharmonic emv coupling
associated with charge disproportionation
2. Activation of SHG along with CO in α-(ET)2I3
▬ verifies our hypothesis derived from the study of the overtone
▬ unambiguous proof of the generation of spontaneous
polarization
3. Observation of SHG interference in α-(ET)2I3
▬ Ferroelectric domains are visualized for the first time
▬ Large domains: P is screened by residual charge carriers
▬ Mobility of domain walls is demonstrated
Temperature Dependence of SHG: (TMTTF)2SbF6
1mm
Nad, Monceau, Brazovskii, PRL, 2001
Concept of “Electronic FEs”
Uniform Chain
Centric
+
CO (N-I transition)
Centric
+
Bond Ordering
Non-centric
(e.g. TTF-CA)
Dimeric Chain
Centric
+
Charge Ordering
Non-centric
(TMTTF)2X: P. Monceau et al., PRL 2001
Sap p h ire
su b strate
Acrylic resin
Ep oxy resin
Sp ecim en
Fu n d am en tal Beam
SHG Beam
ca. 0.5 m m
Alu m in iu m
Cold fi n g er
Cop p er
LBO
Pump-Probe Measurement of SHG
cf. TTF-CA (organic ferroelectric)
a-(BEDT-TTF)2I3
T. Luty et al., Europhys. Lett., 2002.
K. Yamamoto et al., JPSJ 2008
Interplay of Charge and Lattice
-
-
-
-
-
-
-
Pure-Electronic
-
-
-
-
Comparison of Crystal Structure
α-(BEDT-TTF)2I3
Stack I
Stack II
α’-(BEDT-TTF)2IBr2
Stack II
Stack I
Stack I
A
A
a
B
B
A’
A’
C
b
a
B’
b
Triclinic P-1, Z=2 (4xBEDT-TTF in unit cell)
Stack II
Physical Properties of a-(ET)2I3 and a’-(ET)2IBr2
α-(BEDT-TTF)2I3
α’-(BEDT-TTF)2IBr2
10 6
K. Bender et al., MCLC 1984
10 4
T
10 2
(10 -4 emu/mol)
10 0
Tsipn
10 -2
2
1
0
-1
-2
-3
-4
-5
2.5
30K
alternating Heisenberg (S = 1/2)
J1=106 K, J1/J2=0.35, N/NA=0.89
Y. Yue et al., JPSJ, 2009
B. Rothaemel et al. PRB 1986
SHG
2.0
1.5
TSHG
1.0
K. Y. et al., JPSJ, 20081
0.5
0
Cp
1400
206K
1200
1000
800
(N.A. Fortune et al., SSC, 1991)
600
0
50
100
150
200
TEMPERATURE (K)
250
300
Toward Characteristics of Electronic FEs
100.000
Obj. Lens
140000
SH Intensity (arb. u.)
SH Intensity (arb. u.)
a-(ET)2I2Br
100000
60000
20000
Iex2
50
100
150
200
250
10.000
T=150 K
300
T (K)
1.000
0.010
0.100
1.000
10.000
Laser Power (mW)
Spot size: d = 7.1 mm (x5 objective, l=1.55 mm)
Laser: l=1.55 mm, t=100 fs, Rep.=20 MHz
Estimated excitation density for Iex = 500 mW:
Power: 1.28 kW/cm2
Energy: 64 mJ / cm2
x20
x10
-20000
0
x5
100.000