LARP-LBNL-TQS01-Caspi-v2.ppt

Download Report

Transcript LARP-LBNL-TQS01-Caspi-v2.ppt

LARP Collaboration Meeting
TQS01 - Progress
Shlomo Caspi
Lawrence Berkeley National Laboratory
April 26-28, 2006
Outline
• TQS01 - Construction
• Design and Analysis
• Preliminary test results
8/6/2016
S. Caspi
Statement of work – TQS01
One of the main objectives:
• Compare the magnet performance with the
design parameters.
8/6/2016
S. Caspi
TQS01 Main Features
•
•
•
•
•
A 2 layers Nb3Sn Quadrupole
A 10mm wide 27 strand cable. (0.7mm MJR strand)
Short sample 4.2K (B,G,I) : 11.2T, 220T/m, 12.3kA
Accumulated Lorentz stress : S_theta=-123MPa
Accumulated axial force (4 quadrants) : F_z=350kN
8/6/2016
S. Caspi
TQS01
The structure and assembly
is different from any
4 pads
previous magnet of this kind
Aluminum
shell
Yoke
Keys
Filler
Bladder
2 layers
•No collars
•Bladders for coil azimuthal pre-stress
B ~ 12 T, stress: 150 MPa, total axial force = 350 kN
8/6/2016
S. Caspi
TQS01 – Construction
•
•
•
•
•
•
•
8/6/2016
Coil winding
Coil reaction
Instrumentation
Impregnation
Coil sub-assembly
Structure sub-assembly
Final assembly and pre-stress
S. Caspi
Coil winding at FNAL
• A double layer
• Bronze island and
end spacers
• Layer 1 wound on a
mandrel and cured
using a binder.
• Layer 2 wound on
top of layer 1 and
then cured.
8/6/2016
S. Caspi
Coils Shipped to LBNL
8/6/2016
S. Caspi
Prepare for Reaction
Two coils
reacted
together
8/6/2016
S. Caspi
Into Reaction Oven
8/6/2016
S. Caspi
Reaction Cycle (Coils 7 and 8)
•72 hr at 210 C
•48 hr at 400 C
•48 hr at 640 C
8/6/2016
S. Caspi
Post-Reaction
8/6/2016
S. Caspi
Coil - Instrumentation
Strain gauges
and voltage tap
attached to trace
Strain gauge
Voltage tap
8/6/2016
Inner layer
trace
S. Caspi
Ready for Impregnation
8/6/2016
S. Caspi
Impregnation
Coil placed into
impregnation
chamber
Controller
8/6/2016
S. Caspi
Impregnated Coils
Strain gauges placed on layer 1 island
Voltage traces
8/6/2016
S. Caspi
Coil-pack sub-assembly
Coil-pack is a sub-assembly of coils
pads and fillers
8/6/2016
Coil Pack is assembled,
squared and bolted.
S. Caspi
Structure sub-assembly, shell, yoke and
intermediate gap keys
•
20” OD x 18” ID x 40”long, 6061-T6 aluminum
shell, precision machined.
•
1018 steel yoke laminations, 2”-thick
8/6/2016
S. Caspi
SHELL & YOKE SUB-ASSEMBLY,cont’d
8/6/2016
S. Caspi
Final assembly
• Mating the coil pack with the shell & yoke sub-assembly.
8/6/2016
S. Caspi
End Support
bullets
Strain gauges
End plate (89 mm thick)
Axial Aluminum rods
(44 mm dia.)
8/6/2016
S. Caspi
End plates assembly
8/6/2016
S. Caspi
Axial load components
8/6/2016
S. Caspi
Axial Pre-stress
8/6/2016
S. Caspi
Axial Pre-stress, cont’d
• 25 -Ton
hydraulic
actuator
(9500 psi)
8/6/2016
• Axial Loading Rig
S. Caspi
Azimuthal pre-stress (bladder
operation)
8/6/2016
S. Caspi
Complete assembly – return end
8/6/2016
S. Caspi
End splices
8/6/2016
S. Caspi
End splices (pizza box)
8/6/2016
S. Caspi
TQS01 lowered into cryostate
8/6/2016
S. Caspi
Outline
• TQS01 – Construction
• TQS01 – Design and Analysis
• TQS01 – Peliminary results (cool-down)
8/6/2016
S. Caspi
Integrated analysis and simulations
FEM structure
multi-physics
CAD
(engineering)
FEM
(magnetic)
8/6/2016
S. Caspi
3D mechanical analysis:
Lorentz forces
• ANSYS
• x, y, and z coordinates of
each coil element center
• OPERA
• Computation of J x B
(N/mm3) at each x, y, and z
coordinate
• ANSYS
• Computation of J x B  Vel
(N)
• Final force applied to each
coil node
8/6/2016
S. Caspi
TOSCA
I=13.5kA,
1.9K
Layer 2 |B|=12.0T END
Maximum field:
Layer 1 |B|=12.15T in SS
Layer 1 - straight section
Layer 2 - end
8/6/2016
S. Caspi
Structural Analysis - ANSYS
Steps:
Assembly.
Cool-down.
Lorentz forces 10-15 kA
Load Cases:
• Combinations of azimuthal and axial pre-stress
• Model with and without friction or glued
• Blocked turns and individual turns
8/6/2016
S. Caspi
ANSYS model – straight section
Rule 1 - No azimuthal separation at the pole
2
3
1
8/6/2016
S. Caspi
ANSYS model – coil ends
Rule 2 - No axial separation in the end
Island
8/6/2016
Spacer
End-shoe
S. Caspi
Structure – Shell - azimuthal
Shell and yoke
mu=0.6, all other
surfaces with
friction, mu=0.2
Low
assembly
pre-stress
8/6/2016
SS 4.2K
SS 1.8K
S. Caspi
Structure – Axial rods
Low
assembly
pre-stress
8/6/2016
S. Caspi
Azimuthal stress in layer 1 (with friction)
4.2 K
Short sample 1.9K
Short sample 4.2K
± range
14kA
8/6/2016
S. Caspi
Training Mechanism
Straight section
• Axial tensile strain in the pole island held by friction
releases when the coil pulls away due to insufficient
azimuthal pre-stress.
End section
• Sliding and tarring between the coil and the island due to
insufficient axial pre-stress.
8/6/2016
S. Caspi
Island axial strain- straight section
abrupt or
slow
release of
strain
8/6/2016
S. Caspi
release of
axial strain
8/6/2016
S. Caspi
Ends and axial Lorentz Force
Lorentz axial force 351/413 (kN)
Applied axial force 800 (kN)
(with friction)
8/6/2016
S. Caspi
0 friction, limited axial load
8/6/2016
S. Caspi
Island axial displacements- end section
Island
displacement
(with friction)
8/6/2016
S. Caspi
Outline
• TQS01 – Construction
• TQS01 – Design and Analysis
• TQS01 – Preliminary test results
8/6/2016
S. Caspi
Strain Measurements
8/6/2016
S. Caspi
Cool-down
8/6/2016
S. Caspi
Rods – measured cool-down
stress
4.3K
200K
8/6/2016
S. Caspi
Shell – measured cool-down stress
 

E
1   
2
8/6/2016
    z
S. Caspi
Shell – measured cool-down stress
 

E
1   
2
    z
4.3K
200K
8/6/2016
S. Caspi
Island – measured cool-down
stress
•Axial tensile stress
•Compressive
azimuthal stress
4.3K
 

E
1   
2
8/6/2016
    z
S. Caspi
Ratcheting During Cool-Down
8/6/2016
S. Caspi
Shell ratcheting during cool-down
8/6/2016
S. Caspi
Coil ratcheting during cool-down
ratcheting in theta
8/6/2016
S. Caspi
Coil ratcheting during cool-down
Minimum /no
ratcheting in Z
8/6/2016
S. Caspi
Excitation
8/6/2016
S. Caspi
TQS01 4.45k Training
8/6/2016
S. Caspi
Layer 1 center island
Lay1-Lay2 ramp
8/6/2016
S. Caspi
Coil Center Details
SG-Z
tart of L1-L2 ramp
8/6/2016
SG-Theta
Island discontinuity
S. Caspi
Coil End Details
SG-Z
8/6/2016
S. Caspi
Island azimuthal strain during excitation
8/6/2016
S. Caspi
Island strain in θ, magnet center
8/6/2016
S. Caspi
Island strain in Z, magnet center
8/6/2016
S. Caspi
Island axial strain (center)
8/6/2016
S. Caspi
Island Stress
8/6/2016
S. Caspi
Island Stress over many quenches
8/6/2016
S. Caspi
Island strain in Z, lead end
8/6/2016
S. Caspi
Island axial strain (end)
8/6/2016
S. Caspi
Island axial strain (end)
8/6/2016
S. Caspi
Structure
Shell in θ, z
8/6/2016
S. Caspi
Shell azimuthal strain
8/6/2016
S. Caspi
Shell axial strain
8/6/2016
S. Caspi
Shell stress
8/6/2016
S. Caspi
Shell stress
8/6/2016
S. Caspi
Structure
Rods in z
8/6/2016
S. Caspi
Rods Stress
8/6/2016
S. Caspi
Rods Stress
8/6/2016
S. Caspi
Summary
•
The most “engineered” magnet we ever built.
•
Analyzed every component from assembly through
cool-down and excitation and pushed Nb3Sn
technological to new limits.
The design expectations are:
• Reach short sample prediction (field, current, stress)
• Get there with minimum training
8/6/2016
S. Caspi
Summary …
•
•
•
•
First quench – Q1 at 80% of ss (176 T/m)
Plateau – Q12 at 86% (190 T/m)
Thermal cycle on TQS01
Data reduction and analysis:
• Strain gauge measurements
• Quench locations
• Refine ANSYS analysis
• If evidence suggests a problem in coil 6 ramp area:
• Replace coil 6 with spare and retest
• Section ramp area
8/6/2016
S. Caspi