Transcript Document
Analysis of Stress and Strain Review: - Torsional shaft - Axially loaded Bar ππ p ο± P ππ h q F P cos2 ο± ο³ο± ο½ = Aο± A ο΄ο± ο½ V P cos ο± sin ο± ο½ Aο± A P ο΄xy ο‘ ο΄nt ο³n ο΄yx ο³ n ο½ ο΄ xy sin 2ο‘ ο΄ nt ο½ ο΄ xy cos 2ο‘ Questions: (1) Is there any general method to determine stresses on any arbitrary plane at one point if the stresses at this point along some planes are known? (2) For an arbitrary loaded member, how many planes on which stresses are known are required to determine the stresses at any plane at one point? Analysis of Stress and Strain ο³y State of stress at one point: Stress element: y ο³z ο΄zy ο΄yz ο΄yx ο΄yx ο΄xy ο΄zx ο΄xz ο³x ο³x ο³y ο΄xy ο΄xy ο΄yx ο³y z - Use a cube to represent stress element. It is infinitesimal in size. - (x,y,z) axes are parallel to the edges of the element - faces of the element are designated by the directions of their outward normals. x Sign Convention: - Normal stresses: β+β tension; β-β compression. - Shear stresses: β+β the directions associated with its subscripts are plus-plus or minus-minus β-β the directions associated with its subscripts are plus-minus or minus-plus ο³x Plane Stress Definition: Only x and y faces are subject to stresses, and all stresses are parallel to the x and y axes. ο³ z ο½ ο΄ xz ο½ ο΄ yz ο½ 0 ο³y 1 ο΄x y ο³ x 1 1 1 Stresses on inclined planes ο΄xy ο΄x y 1 1 ο± ο³x ο΄yx ο³ y ο³x 1 ο₯F ο₯F x ο½0 y ο½0 Transformation equations for plane stress ο³ x ο½ ο³ x cos2 ο± ο« ο³ y sin 2 ο± ο« 2ο΄ xy sin ο± cos ο± 1 ο΄ x y ο½ ο ο¨ο³ x ο ο³ y ο© sin ο± cos ο± ο« ο΄ xy ο¨ cos2 ο± ο sin 2 ο± ο© 1 1 ο³x ο½ ο³x ο«ο³ y 1 ο΄x y ο½ ο 1 1 2 ο« ο³ x οο³ y 2 ο³ x οο³ y 2 cos 2ο± ο« ο΄ xy sin 2ο± sin 2ο± ο« ο΄ xy cos 2ο± Transformation Equations ο³x ο½ 1 ο³y ο½ ο³ x ο«ο³ y 2 ο³ x ο«ο³ y 1 ο΄x y ο½ ο 1 1 2 ο« ο ο³ x οο³ y 2 ο³ x οο³ y 2 ο³ x οο³ y 2 cos 2ο± ο« ο΄ xy sin 2ο± cos 2ο± ο ο΄ xy sin 2ο± ο³ x ο«ο³ y ο½ ο³ x ο«ο³ y 1 1 sin 2ο± ο« ο΄ xy cos 2ο± ο± angle between x1 and x axes, measured counterclockwise Plane Stress β Special Cases ο³x Uniaxial Stress: ο³x ο΄y Pure Shear: ο΄xy x ο΄xy Biaxial Stress: ο΄yx ο³y ο³x ο³x ο³y Plane Stress Example 1: A plane-stress condition exists at a point on the surface of a loaded structure, where the stresses have the magnitudes and directions shown on the stress element of the following figure. Determine the stresses acting on an element that is oriented at a clockwise angle of 15o with respect to the original element. Principal Stresses Principal stresses: maximum and minimum normal stresses. Principal planes: the planes on which the principal stresses act ο³x ο½ ο³x ο«ο³y ο« 2 1 ο³x οο³ y 2 cos 2ο± ο« ο΄ xy sin 2ο± ο dο³ x1 dο± ο½ο ο³x οο³ y 2 2sin 2ο± ο« 2ο΄ xy cos 2ο± ο½ 0 ο tan 2ο± p ο½ 2ο΄ xy ο³x οο³ y ο± p : The angle defines the orientation of the principal planes. Principal Stresses tan 2ππ = 2ππ₯π¦ ππ₯ βππ¦ β cos 2ππ = ππ₯1 OR tan 2ππ = ππ₯ βππ¦ 2π ππ₯ +ππ¦ 2 β cos 2ππ = β ππ₯1 , sin 2ππ = ππ₯π¦ π ,π = ππ₯ βππ¦ 2 2 + ππ₯π¦ 2 ππ₯ + ππ¦ ππ₯ β ππ¦ ππ₯ β ππ¦ ππ₯π¦ = + β + ππ₯π¦ β 2 2 2π π π1 = ππ₯1 = 2ππ₯π¦ ππ₯ βππ¦ + ππ₯ βππ¦ 2π ππ₯ βππ¦ 2 2 + ππ₯π¦ 2 , sin 2ππ = β ππ₯π¦ π ,π = ππ₯ βππ¦ 2 2 ππ₯ + ππ¦ ππ₯ β ππ¦ βππ₯ + ππ¦ βππ₯π¦ = + β + ππ₯π¦ β 2 2 2π π π2 = ππ₯1 = + ππ₯π¦ 2 ο³1 ο³ ο³ 2 ππ₯ +ππ¦ 2 β ππ₯ βππ¦ 2 2 + ππ₯π¦ 2 Shear Stress Shear stresses on the principal planes: ο΄x y ο½ ο ο³ x οο³ y 1 1 2 sin 2ο± p ο« ο΄ xy cos 2ο± p ο½ 0 Example 2: Principal stresses in pure shear case: ο΄y ο΄xy x ο΄xy ο΄yx Maximum Shear Stresses ο΄x y ο½ ο 1 1 ο³ x οο³ y 2 sin 2ο± ο« ο΄ xy cos 2ο± dο΄ x1 y1 dο± ο½ ο ο¨ο³ x ο ο³ y ο© cos 2ο± ο 2ο΄ xy sin 2ο± ο½ 0 ο³ x οο³ y 1 tan 2ο±s ο½ ο ο tan 2ο±s ο½ ο 2ο΄ xy tan 2ο± p tan 2ππ = βtanΞ± π 2 Let πΌ = β 2ππ 2ππ = β Ξ± or ο¦ ο³ οο³ y οΆ ο³ οο³ 2 ο·ο· ο« ο΄ xy 2 ο½ 1 ο΄ max ο½ ο§ο§ x 2 ο¨ 2 οΈ 2 2ππ = Ο β Ξ± ο±s ο½ ο± p ο 1 1 ο±s ο½ ο± p ο« 2 1 ο° 4 ο° 4 Plane Stress Example 3: Find the principal stresses and maximum shear stresses and show them on a sketch of a properly oriented element. Mohrβs Circle For Plane Stress β Equations of Mohrβs Circle Transformation equations: ο³x ο½ ο³x ο«ο³ y 1 ο΄x y ο½ ο 1 1 2 ο« ο³ x οο³ y 2 ο³ x οο³ y 2 cos 2ο± ο« ο΄ xy sin 2ο± (1) sin 2ο± ο« ο΄ xy cos 2ο± ο¦ ο§ ο³ x1 ο ο¨ (1)2 + (2)2 ο¨ο³ ο³x ο«ο³ y οΆ 2 ο¦ ο³ x οο³ y οΆ 2 2 ο· ο« ο΄ x1 y1 ο½ ο§ οΈ ο¨ ο© 2 2 2 ο· ο« ο΄ xy οΈ ο ο³ ave ο« ο΄ x1 y1 ο½ R 2 2 x1 (2) ο³ ave ο½ ο³ x ο«ο³ y 2 2 , ο¦ ο³ x οο³ y οΆ R ο½ ο§ο§ ο¨ 2 2 ο·ο· ο« ο΄ xy 2 οΈ Two Forms of Mohrβs Circle ο΄x y 1 1 ο³x 1 ο³x 1 ο΄x y 1 1 Construction of Mohrβs Circle Approach 1: For the given state of stresses, calculate ο³ ave and R. The center Of the circle is ( ο³ ave , 0) and the radius is R. ο³x 1 ο΄x y 1 1 Construction of Mohrβs Circle Approach 2: Find points corresponding to ο± = 0 and ο± = 90o and then draw a line. The intersection is the origin of the circle. ο³x 1 ο΄x y 1 1 Applications of Mohrβs Circle Example 4: An element in plane stress at the surface of a large machine is subject to stresses ππ₯ = 15000psi; ππ¦ = 5000psi; ππ₯π¦ = 4000psi Using Mohrβs circle, determine the following quantities: (a) the stresses acting on an element inclined at an angle of 40o, (b) the principal stresses and (c) the maximum shear stress. Plane Strain Definition: Only x and y faces are subject to strains, and all strains are parallel to the x and y axes. ο₯ z ο½ ο§ xz ο½ ο§ yz ο½ 0 Note: Plane stress and plane strain do not occur simultaneously. Plane Strain Transformation Equations: ο₯x ο½ 1 ο₯y ο½ ο₯x ο«ο₯y 2 ο₯x ο«ο₯y 2 1 ο§x y 1 1 2 ο« ο½ο ο ο₯x οο₯y 2 ο₯x οο₯y ο₯x οο₯y 2 2 cos 2ο± ο« cos 2ο± ο sin 2ο± ο« Principal Strains: ο§ xy 2 ο§ xy sin 2ο± 2 ο§ xy sin 2ο± 2 ο₯x ο«ο₯y ο½ ο₯x ο«ο₯y 1 1 cos 2ο± ο₯1 ο½ ο₯2 ο½ ο₯x ο«ο₯y 2 ο₯x ο«ο₯y 2 ο¦ ο₯ x ο ο₯ y οΆ ο¦ ο§ xy οΆ ο·ο· ο« ο§ο§ ο·ο· ο« ο§ο§ ο¨ 2 οΈ ο¨ 2 οΈ 2 2 ο¦ ο₯ x ο ο₯ y οΆ ο¦ ο§ xy οΆ ο·ο· ο« ο§ο§ ο·ο· ο ο§ο§ ο¨ 2 οΈ ο¨ 2 οΈ 2 2