像增强器光锥ICCD系统光纤缠绕晶体封装 - PandaX Dark Matter

Download Report

Transcript 像增强器光锥ICCD系统光纤缠绕晶体封装 - PandaX Dark Matter

空间宇宙线和高能伽玛射线探测
with the High Energy cosmic-Radiation
Detection (HERD) Facility onboard
China’s Space Station
Shuang-Nan Zhang (张双南)
[email protected]
Center for Particle Astrophysics
粒子天体物理中心
Institute of High Energy Physics
Chinese Academy of Sciences
1/30
China’s Space Station Program
HERD
Phase -II
2020
Space Station
3 large modules
~ 60 tons
~10-year lifetime
HERD
Phase -II
2016
2011
Space lab:
POLAR
no living cabin
Phase -I
10 astronauts in 5 flights  space walk
2003
2/30
background
Gamma-ray
HERD
electron
He
proton
Dark matter particle
3/35
3/30
HERD: High Energy cosmic-Radiation Detector
Science goals
Mission requirements
Dark matter
search
R1: Better statistical measurements
of e/γ between 100 GeV to 10 TeV
Origin of
Galactic
Cosmic rays
R2: Better spectral and composition
measurements of CRs between
300 GeV to PeV* with a large
geometrical factor
Secondary science: γ-ray astronomy  monitoring of GRBs,
microquasars, Blazars and other transients  down to 100 MeV
for γ -rays  plastic scintillator shields for γ -ray selection
*complementary to high altitude cosmic-ray observations
4/30
HERD Cosmic Ray Capability Requirement
Model 2
Heavy Model
Model 1
Light model
PeV
PeV
N(E>E0; 2 yr)
Detection limit: N = 10 events
PeV
PeV
HERD
HERD
TeV
TeV
P (<A> ~ 1)
He (<A> ~ 4)
L (<A> ~ 8)
M (<A> ~ 14)
H (<A> ~ 25)
VH (<A> ~ 35)
Fe (<A> ~ 56)
Except for L, up
to PeV spectra
feasible with
GF~2-3 in
~years:
discriminate
between
models.
5/30
HERD基线设计:3维量能器5面灵敏
HERD比国内外类似实验性能提高
几十倍,但是重量是国际空间站
AMS的~1/3,只比其它实验略重
顶面STK(钨板+硅微条)
电荷探测
宇宙线成分甄别
伽玛径迹探测
侧面STK(钨板+硅微条)
CALO量能器
电子/伽玛能量测量
宇宙线核子能量测量
电子/质子鉴别
6/30
HERD初步方案设计
载荷总重量约2300
kg,总包络尺寸为
1510×1480×158
0 mm3,总电子学
路数约45万路,总
功耗约1430W。
7/30
Characteristics of all components
tracker
(top)
type size
X0,λ unit
main functions
Si
Charge
70 cm × 2 X0 7 x-y
strips 70 cm
(W foils) Early shower
Tracks
Si
3 x-y
Nucleon Track
65 cm × -strips 50 cm
Charge
tracker
4 sides
(baseline)
CALO
~10K 63 cm × 55
LYSO 63 cm × X0
cubes 63 cm
3λ
3 cm × e/γ energy
3 cm × nucleon energy
3 cm
e/p separation
HERD+ design: 5 sides with the same trackers 
total weight ~2800 kg  an half-open-bay vehicle
needed and will be available for HERD.
8/30
Expected performance of HERD
γ/e energy range (CALO)
tens of GeV-10TeV
nucleon energy range (CALO)
up to PeV
γ/e angular resol. (top Si-strips)
0.1o
nucleon charge resol. (all Si-strips)
0.1-0.15 c.u
γ/e energy resolution (CALO)
proton energy resolution (CALO)
e/p separation power (CALO)
<1%@200GeV
20%
<10-5
electron eff. geometrical factor (CALO)
3.7 m2sr@600 GeV
proton eff. geometrical factor (CALO)
2.6 m2sr@400 TeV
9/30
各空间实验主要性能参数对比
HERD比国内外类似实验性能提高几十倍,但
是重量是AMS的1/4-1/3,只比其它实验略重
10/30
Other detectors: Top down  “small” FoV
暗物质粒
子卫星
2015
ISS-AMS:
2011
ISS-CALET: 2015
ISS-CREAM:
2015
11/30
Simulation results: energy resolutions
Protons
Electrons
Electron < 1%; Proton: ~20%
Essential for spectral features!
12/30
Energy Resolution for gamma-rays
500 MeV-100 GeV result
13/30
HERD Eff. Geometrical Factor: CALO
All five sides
All five sides
14/30
HERD sensitivity to gamma-ray line
HERD 1 yr
PAMELA: 2006-2016 CALET: 2015-2020; AMS: 2011-2021;
DAMPE: 2015-2020; Fermi: 2008-2018; HERD: 2020-2021
15/30
DM annihilation line of HERD
0  0    
0  0    Z 0
16/30
Expected HERD Proton and He Spectra
Horandel model as HERD input
Only statistical error
Protons
He
17/30
Expected HERD Spectra of C and Fe
C
Fe
18/30
Gamma-ray Sky Survey Sensitivity
Narrow FoV
19/30
量能器读出方案
20/30
闪烁体信号读出方案
• WLSF将LYSO晶体闪烁光子引出
光纤缠绕
晶体封装
• 光纤输出至ICCD系统
像增强器
ICCD系统
光锥
21/30
HERD关键技术攻关
• 高能所进行光纤耦合和晶体封装方式研究、晶体性能研究、
方案初步验证、量能器整体设计方案研究等
• 进行光纤性能研究、晶体-光纤单元光输出研究
• CsI(Na)阵列+ICCD的宇宙线测试装置
• LYSO晶体基本性质测试
• 正在利用所内E2束线进行晶体发光线性测量
2×2×6 CsI颗粒阵列(光纤引出)
上下各为一符合探测器
典型宇宙线事例的ICCD图像
22/30
Signal Readout: Two Types of Coupling
Relay Lens
Weight: ~120 kg,
Size: 450×450×670
(mm)
----4
units
Taper
Size: 600(L) x 460(W) x
350(H)mm
Weight: 50Kg
--- 4 units
23/30
Relay Lens Tests
Performance Characteristics of
Principle Prototype :
512×512 back illuminated CCD;
Adjustable CCD gain and MCP
gain ;
Fame rate : 280 frame/second;
External trigger mode
24/30
Taper Coupling Tests
25
25/30
Requirement of dynamic range
• Simulation  dynamic range of 106
– Crystal’s linearity is OK: To be verified in BEPC beam test
– Image intensifier: ~ 104
– CCD: FWC/sqrt(ENC) < 104 (FWC=full well charge)
• 2 outputs with different energy ranges from crystals
– Option 1: 2 fibers on the surface of crystals
– Option 2: Fiber splitter outside the calorimeter
26/30
计划2015年1/20样机CERN束流试验
• CERN/SPS束流,H2、H4、H8适合HERD使用
– 原初注入质子,打靶产生次级粒子,经过多极磁体对
能量挑选
– 动量范围:质子 10 – 400 GeV/c;电子 5 – 300GeV/c
– ~1分钟一个束团,每个束团持续8秒
27/30
1st HERD workshop, Oct.17-18, 2012, IHEP, Beijing
28/30
2nd HERD Workshop @IHEP 2013/12/2-3
29/30
The HERD Proto-Collaboration Team
• Chinese institutions (more welcome!)
– Institute of High Energy Physics, Purple Mountain
Observatory, Xi’an Institute of Optical and Precision
Mechanics, University of Science and Technology of
China, Nanjing University, Peking University, Yunnan
University, China University of Geosciences, Ningbo
University, Guangxi University
• International institutions (more welcome!)
– Switzerland: University of Geneva
– Italy: Università di Pisa/INFN, IAPS/INAF, University of
Florence/INFN, University of Perugia/INFN, University of
Trento/INFN, University of Bari/INFN
– Sweden: KTH
– USA: MIT/Harvard
30/30