Transcript 11-15-0602
September, 2015 doc.: IEEE 802.11-15/0602r6 HE-LTF Sequence for UL MU-MIMO Date: 2015-09-13 Authors: Name Affiliation Address Phone Qinghua Li Email [email protected] Xiaogang Chen Robert Stacey Intel 2111 NE 25th Ave, Hillsboro OR 97124, USA [email protected] +1-408-765-9698 [email protected] Po-Kai Huang [email protected] Chitto Ghosh [email protected] Rongzhen Yang [email protected] Hongyuan Zhang [email protected] Yakun Sun [email protected] Lei Wang Liwen Chu Jinjing Jiang Marvell 5488 Marvell Lane, Santa Clara, CA, 95054 [email protected] +408-222-2500 [email protected] [email protected] Yan Zhang [email protected] Rui Cao [email protected] Submission Slide 1 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Authors (continued) Name Affiliation Address Phone Email Jie Huang [email protected] Sudhir Srinivasa [email protected] Saga Tamhane Mao Yu Marvell (Cont’d) 5488 Marvell Lane, Santa Clara, CA, 95054 [email protected] 408-222-2500 [email protected] Edward Au [email protected] Hui-Ling Lou [email protected] Ron Porat [email protected] Matthew Fischer [email protected] Sriram Venkateswaran Broadcom Tu Nguyen Vinko Erceg Brian Hart Cisco Systems Pooya Monajemi Submission 170 W Tasman Dr, San Jose, CA 95134 Slide 2 [email protected] [email protected] Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Authors (continued) Name Affiliation Address Phone Email Wookbong Lee [email protected] Kiseon Ryu [email protected] Jinyoung Chun [email protected] Jinsoo Choi [email protected] Jeongki Kim LG Electronics Giwon Park 19, Yangjae-daero 11gil, Seocho-gu, Seoul 137130, Korea [email protected] [email protected] Dongguk Lim [email protected] Suhwook Kim [email protected] Eunsung Park [email protected] HanGyu Cho [email protected] Thomas Derham Submission Orange [email protected] Slide 3 Qinghua Li, Li, Xiaogang Xiaogang Chen, Chen, et et al. al. Qinghua September, 2015 doc.: IEEE 802.11-15/0602r6 Authors (continued) Name Affiliation Address Samsung Innovation Park, Cambridge CB4 0DS (U.K.) Maetan 3-dong; Yongtong-Gu Suwon; South Korea 1301, E. Lookout Dr, Richardson TX 75070 Innovation Park, Cambridge CB4 0DS (U.K.) 1301, E. Lookout Dr, Richardson TX 75070 Maetan 3-dong; Yongtong-Gu Suwon; South Korea Fei Tong Hyunjeong Kang Kaushik Josiam Mark Rison Rakesh Taori Sanghyun Chang Phone Email +44 1223 434633 [email protected] +82-31-279-9028 [email protected] (972) 761 7437 [email protected] +44 1223 434600 [email protected] (972) 761 7470 [email protected] +82-10-8864-1751 [email protected] Yasushi Takatori [email protected] Yasuhiko Inoue [email protected] Yusuke Asai NTT 1-1 Hikari-no-oka, Yokosuka, Kanagawa 239-0847 Japan [email protected] Koichi Ishihara [email protected] Akira Kishida [email protected] Akira Yamada Fujio Watanabe Haralabos Papadopoulos Submission NTT DOCOMO 3-6, Hikarinooka, Yokosukashi, Kanagawa, 239-8536, Japan [email protected] 3240 Hillview Ave, Palo Alto, CA 94304 watanabe@docomoinnovations. com hpapadopoulos@docomoinnova tions.com Slide 4 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Authors (continued) Name Affiliation Phillip Barber Address Phone pbarber@broadbandmobilete ch.com The Lone Star State, TX Peter Loc [email protected] Le Liu Jun Luo Yi Luo Yingpei Lin Jiyong Pang Zhigang Rong Rob Sun David X. Yang Yunsong Yang Zhou Lan Junghoon Suh Jiayin Zhang Submission Email Huawei F1-17, Huawei Base, Bantian, Shenzhen 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai F1-17, Huawei Base, Bantian, Shenzhen 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai 10180 Telesis Court, Suite 365, San Diego, CA 92121 NA 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada F1-17, Huawei Base, Bantian, Shenzhen 10180 Telesis Court, Suite 365, San Diego, CA 92121 NA F1-17, Huawei Base, Bantian, SHenzhen 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai Slide 5 +86-18601656691 [email protected] [email protected] +86-18665891036 [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] +86-18565826350 [email protected] [email protected] +86-18601656691 [email protected] Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Authors (continued) Name Affiliation Address Qualcomm Straatweg 66-S Breukelen, 3621 BR Netherlands 5775 Morehouse Dr. San Diego, CA, USA 5775 Morehouse Dr. San Diego, CA, USA 1700 Technology Drive San Jose, CA 95110, USA 5775 Morehouse Dr. San Diego, CA, USA 5775 Morehouse Dr. San Diego, CA, USA 5775 Morehouse Dr. San Diego, CA, USA Straatweg 66-S Breukelen, 3621 BR Netherlands Straatweg 66-S Breukelen, 3621 BR Netherlands 1700 Technology Drive San Jose, CA 95110, USA 5775 Morehouse Dr. San Diego, CA, USA 5775 Morehouse Dr. San Diego, CA, USA 1700 Technology Drive San Jose, CA 95110, USA 1700 Technology Drive San Jose, CA 95110, USA 1700 Technology Drive San Jose, CA 95110, USA Albert Van Zelst Alfred Asterjadhi Bin Tian Carlos Aldana George Cherian Gwendolyn Barriac Hemanth Sampath Menzo Wentink Richard Van Nee Rolf De Vegt Sameer Vermani Simone Merlin Tevfik Yucek VK Jones Youhan Kim Submission Slide 6 Phone Email [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Authors (continued) Name Affiliation James Yee Alan Jauh Address Phone Email No. 1 Dusing 1st Road, Hsinchu, Taiwan +886-3-567-0766 [email protected] [email protected] Mediatek Chingwa Hu [email protected] m Frank Hsu [email protected] 2860 Junction Ave, San Jose, CA 95134, USA Thomas Pare +1-408-526-1899 [email protected] om ChaoChun Wang James Wang Jianhan Liu [email protected] Mediatek USA [email protected] [email protected] Tianyu Wu [email protected] Russell Huang [email protected] m Eric Wong +1-408-9745967 [email protected] Chris Hartman Aon Mujtaba Apple Cupertino, CA Joonsuk Kim [email protected] Guoqing Li Submission +1-408-974-9164 Slide 7 [email protected] Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Authors (continued) Name Affiliation Address Phone Weimin Xing Kaiying Lv Email [email protected] n [email protected] ZTE Corp. Ke Yao [email protected] Bo Sun [email protected] Yonggang Fang Submission ZTE TX [email protected] Slide 8 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Background • P matrix coded HE-LTF was adopted in last meeting [1] – Maximize legacy reuse • Adding details, we propose HE-LTF sequences for uplink multiuser MIMO Submission Slide 9 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Problem Statement • In uplink multiuser MIMO, different UL users have different carrier frequency offsets • AP may want to estimate the CFOs for demodulating data and mitigating multiuser interference • For the CFO estimation, per-stream phase offsets at different LTF symbol instants need to be obtained Submission Slide 10 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Proposed Solution • Assign orthogonal LTF sequences to different streams within the UL MU-MIMO burst – Exploit frequency domain correlation – Per-stream channel responses can be estimated for each LTF symbol – CFO can be estimated by checking the phase difference between the channel estimates obtained at different LTF symbols • Additional benefit — No need to insert pilot tones in LTF symbols Submission Slide 11 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Generating LTF sequences • Generated from P matrix – Scramble a common sequence by different rows of P matrix • Piecewise orthogonal – Sub-sequences with any K (e.g. 4) contiguous entries are orthogonal Submission Slide 12 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Cyclic Orthogonality • Orthogonal sequences of any length can be generated by exploiting cyclic orthogonality among P matrix rows – E.g. 2 users with 26 tones and K=4 [1 X User 1 L1 L2 X L3 L4 … L21 L22 User 2 L1 L2 X L23 L24 L3 L4 … L21 L22 L25 L26 [1 X X -1] 1] X L23 L24 L25 L26 orthogonal Submission Slide 13 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Orthogonal Tone Blocks • By exploiting cyclic orthogonality, we have many orthogonal tone blocks generating data samples for CFO estimation User 1 S1(1) S1(2) S1(3) S1(4) S1(5) S1(6) S1(7) S1(8) S1(9) … User 2 S2(1) S2(2) S2(3) S2(4) S2(5) S2(6) S2(7) S2(8) S2(9) … Orthogonal tone block 1 Submission Orthogonal … tone block 2 Slide 14 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 LTF symbols of stream k Stream index Sequence common to all streams Si(k) Cj(k) 𝐿𝑖 Tone index LTF symbol index Subcarrier 1 Subcarrier 2 Time LTF symbol 1 Submission LTF symbol 2 Slide 15 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 LTF symbols of multiple streams • Orthogonal sequences are applied to different streams on each tone block Orthogonal sequences Submission Slide 16 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 CFO Estimation • Channel response remains roughly constant over each tone block • Phase response is estimated from each tone block • CFO is estimated by averaging the phase rotation rate over tone blocks and Rx antennas Orthogonal sequences Submission Slide 17 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 One P matrix for all • Since the 8×8 P matrix consists of orthogonal 2×2 and 4×4 sub-matrixes, we can use the rows of 8×8 P matrix to define LTF sequences for up to 8 streams 𝑃4×4 𝑃8×8 = 𝑃4×4 𝑃4×4 = Submission 𝑃4×4 −𝑃4×4 1 −1 1 1 1 1 −1 1 1 1 1 −1 −1 1 1 1 Slide 18 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Simulation Assumptions • • • • • • • • • • Uplink MU-MIMO 8 Rx antennas at AP, 4/6 STAs each sending 1 stream MCS7/MCS4; 20 MHz bandwidth; ChDNLoS/UMiNLoS CFO error is modeled as +CFO/-CFO with fixed value Timing offset is uniformly distributed over [0, Toff ns] for each STA CSD value follows 11ac & 11ax larger CSD(TBD) Per STA pilot tracking is enabled CFO is estimated and compensated for the proposed new LTF sequence Channel smoothing is not applied 4x/2x (3.2us/1.6us GI) LTF is used Submission Slide 19 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 CFO Tolerance DNLoS; 8Rx@AP; 4STA; MCS7 0 10 -1 10 PER 3.5dB 0.15dB -2 10 -3 Freqoff Freqoff Freqoff Freqoff Freqoff 10 0Hz/11ac LTF 400Hz/new LTF 400Hz/11ac LTF 200Hz/new LTF 200Hz/11ac LTF -4 10 20 21 22 23 24 25 SNR(dB) 26 27 28 29 30 Tolerate +/- 400 Hz CFO within negligible degradation to ideal and >3 dB improvement over legacy Submission Slide 20 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Timing Offset Tolerance DNLoS; 8Rx@AP; 4STA; MCS7 0 10 Freqoff 0Hz/11ac LTF Freqoff 400Hz/new LTF 0nsToff Freqoff 400Hz/11ac LTF 0nsToff Freqoff 400Hz/new LTF 1usToff Freqoff 400Hz/11ac LTF 1usToff 3 dB -1 10 PER Within 1 dB -2 10 -3 10 20 22 24 26 SNR(dB) 28 30 32 Tolerate 1 μs timing offset at 10% PER with sub-dB degradation to ideal and 3 dB improvement over legacy Submission Slide 21 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Robust to Frequency Selectivity MCS4;UMiNLoS 0 10 Freqoff 0Hz/ 11ac LTF/0ns Toff Freqoff 400Hz/ new LTF/600ns Toff Freqoff 400Hz/ 11ac LTF/600ns Toff -1 PER 10 -2 10 -3 10 14 15 16 17 18 SNR(dB) 19 20 21 22 Work fine in outdoor channels Submission Slide 22 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 With per-stream CSD ChD; 6x8; CSD; MCS7 0 10 w/o CFO; w/o CSD 400Hz CFO; 11ac CSD [0 -400 -200 -600 -350 -650] 400Hz CFO; 11ax CSD [0 -800 -400 -1000 -600 -1200] -1 PER 10 -2 10 -3 10 -4 10 28 29 30 31 SNR(dB) 32 33 34 Work fine with CSD Submission Slide 23 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 2x LTF 10 ChD 4STA 2x 0 Freqoff 0Hz/ 11ac LTF Freqoff 400Hz/ new LTF Freqoff 400Hz/ 11ac LTF -1 PER 10 2dB 10 10 -2 -3 20 22 24 26 SNR(dB) 28 30 32 Work fine with 2x LTFs Submission Slide 24 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 UL transmission with beamforming 4STAs(2Tx->8Rx); ChD; MCS7 0 10 • 20MHz channel • STA: 2 Tx ant. with ideal beamforming • AP: 8 Rx ant. • 4 STAs 2Tx BF w/o CFO 2Tx BF CFO 400Hz -1 PER 10 -2 10 0.3 dB -3 10 • • 20 21 22 23 SNR(dB) 24 25 26 Rank inverse in BF may cause phase discontinuity, which will break the orthogonality in frequency domain. The observation is rank inverse does not occur frequently. Even it happens, only limited samples are affected. Submission Slide 25 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 UL transmission with power offset 6STAs; 8Rx@AP; ChD MCS7 0 10 • • • -10dB w/o CFO -10dB CFO 400Hz -6dB w/o CFO -6dB CFO 400Hz • -1 10 PER • STA: 1 Tx ant. AP: 8 Rx ant. 4 STAs received with 0dB power 1 STA received with 10dB power 1 STA received with 6dB power -2 10 0.2 dB 0.2 dB -3 10 • • 26 27 28 29 30 31 SNR(dB) 32 33 34 35 Stronger stream may leak power to the weaker stream due to non-ideal orthogonality; The CFO estimation is not impacted too much if the power leakage is within moderate range. – We see some obvious impact for power offset > 10dB Submission Slide 26 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 4STAs; 8Rx; MCS7 DNLoS 0 PAPR Issue 0 10 4STAs; 8Rx; MCS0 DNLoS 10 11ac LTF 10bit quantization Masked LTF 10bit quantization Masked LTF 10bit quantization 11ac LTF 10bit quantization Masked LTF 6bit quantization 11ac LTF 6bit quantization Unquantized -1 10 -1 PER PER 10 -2 10 -2 10 -3 10 -3 -4 10 10 21 22 23 24 25 26 27 -4 -3 -2 -1 0 1 2 SNR[dB] SNR[dB] • Use fixed point simulation to evaluate if the dynamic range increase in HELTF impacts the overall performance (10/6bits quantization is considered); • The PAPR increase in the masked LTF has marginal impact to the overall performance. – PAPR in the data part is the bottleneck. Submission Slide 27 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Summary • UL MU-MIMO CFO estimation is enabled by assigning orthogonal LTF sequences to different streams – Optimal performance – Maximum reuse of legacy design – Low complexity • Propose to use the rows of 8×8 P matrix as the masking sequences for generating the orthogonal HE-LTF sequences for UL MU-MIMO Submission Slide 28 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Reference [1] “Specification Framework for TGax,” doc.: IEEE 802.11-15/0132r4, Section 3.2, March 2015 Submission Slide 29 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Straw Poll 1 • Do you agree to add to TGax Specification Framework Document? – The HE-LTF sequences for UL MU-MIMO shall be generated as follows. For each stream, a common sequence shall be masked repeatedly in a piece-wise manner by a distinct row of an 8x8 orthogonal matrix. When the length of the LTF sequence is not divisible by 8, the last M elements of the LTF sequence (M being the remainder after the division of LTF length by 8) shall be masked by the first M elements of the orthogonal matrix row. – Yes – No – Abstain Submission Slide 30 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Straw Poll 2 • Do you agree to add to TGax Specification Framework Document? – The orthogonal matrix used to mask the HE-LTF sequence in SP1 is the 8x8 Pmatrix used in 11ac. Submission Slide 31 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 Backup Submission Slide 32 Qinghua Li, Xiaogang Chen, et al. September, 2015 doc.: IEEE 802.11-15/0602r6 4STAs; 8Rx; MCS7 DNLoS 0 10 Unquantized 11ac LTF 10bit Masked LTF 10bit -1 PER 10 -2 10 -3 10 21 22 23 24 25 26 27 21 22 23 24 SNR[dB] Submission Slide 33 Qinghua Li, Xiaogang Chen, et al.