Transcript slides

Part I:
3-sigma anomaly of W->tau nu decay
in new physics beyond SM
----first clean hint of right-handed charge current?
(hep-ph/0504123)
朱守华(Shou-hua Zhu)
Peking University
July 2005 @ Tsinghua Univ.
•3-sigma anomaly of W->tau nu measurements
•Anomaly in 2HDM and MSSM
•Anomaly indicates right-handed charge current?
朱守华, 北京大学物理学院
1
Two destinations of puzzles
1: Puzzles stand for new dynamics
•Speed of light as constant
•- puzzle
•Sun neutrino missing
2: Puzzles stand for ignorance (both theoretical and expt.)
•CDF di-jet
•Re() in K-system
•b-inclusive production
朱守华, 北京大学物理学院
2
•ADL final
•O prel.
Anomaly mainly
comes from L3
朱守华, 北京大学物理学院
3
3-sigma anomaly of W->tau measurements,
hep-ex/0412015
New physics?
朱守华, 北京大学物理学院
4
3-sigma anomaly of W->tau nu is especially
interesting and important:
•In SM involved is only pure left-handed
charge current
•Simpler kinematics and less hadronic
uncertainties.
朱守华, 北京大学物理学院
5
Possible explanations in new physics
beyond the SM:
•
•
•
•
Oblique-type corrections -> NO!
Flavor-dependent interaction!
Satisfy neutral-current data (Z-decay) at O(0.1%)
Satisfy tau-> nu_tau l nu_l data
•Tan(beta) enhancement flavor interactions
•Higgs-fermion Yukawa couplings in 2HDM
•Chargino(Neutrolino)-fermion couplings in MSSM
Positive!
朱守华, 北京大学物理学院
6
2-Higgs doublet model (2HDM)
Negative except for near-degenerate Higgs mass case:
Lebedev etal., PRD62(2000)055014
朱守华, 北京大学物理学院
7
MSSM
•Use FeynArts, FormCalc, LoopTools to scan parameter space
•In most cases, delta_new is negative
•In all cases
朱守华, 北京大学物理学院
8
朱守华, 北京大学物理学院
9
朱守华, 北京大学物理学院
10
朱守华, 北京大学物理学院
11
Anomaly in 2HDM and MSSM
•It is hard to account for anomaly in two models.
•And it is even harder to account for both W anomaly
and neutral data.
朱守华, 北京大学物理学院
12
Anomalous left- and right-handed couplings
From W->tau nu_tau data:
朱守华, 北京大学物理学院
13
Constraints from tau-decay data
Delta_L and Delta_R are constrainted by Michel
parameters which can be extracted from energy
spectrum of daughter letopn in tau->nu_tau l nu_l.
PDG(2004)
朱守华, 北京大学物理学院
14
Allowed
small
regions at
95% CL
dR: 0-> 0.12
dL: 1-> 1.005
朱守华, 北京大学物理学院
15
Anomalous left- and right-handed couplings for
3rd generation quark :
From B->X_s gamma measurements:
Re(dR)< 4 10-3 for Wtb
F. Larios etal., PLB457 (1999)334
|dR| 0.12
for W
?
朱守华, 北京大学物理学院
16
Summary for 1st part (questions)
•Is W->tau nu_tau 3-sigma anomaly the first clean
signal for the existence of right-handed charge
current?
•How is this anomaly related to fermion mass
generation (flavor physics)?
•Will parity be restored at high energy?
•Does anomaly indicate the non-universality of
gauge interactions for different generation?
X.Y. Li and E. Ma, PRL47, 1788(1981)
朱守华, 北京大学物理学院
17
Part II:
Distinguishing Split from TeV
(normal) SUSY at ILC
hep-ph/0407072, PLB604,207(2004)
朱守华
Shou-hua Zhu
Peking University
July 2005@ Tsinghua Univ.
Outline
Why Split SUSY (SS)?
How to distinguish SS from TeV SUSY?
Chargino pair production at Linear
colliders
Summary
朱守华, 北京大学物理学院
19
Why Split SUSY? (I)
 Naturalness problem in the SM
mHphy= mH0 +c 2+…,  ---new physics scale
=> New Physics should appear at TeV
(TeV/ EW ~10)
 Solutions (TeV scale New Physics) to Naturalness
problem
TeV SUSY or little Higgs models
Low scale gravity
Composite Higgs boson etc.
朱守华, 北京大学物理学院
20
 TeV New Physics is an attracting thing
(important basis of future colliders),
but …
朱守华, 北京大学物理学院
21
Akani-Hamed,
Pheno2005
朱守华, 北京大学物理学院
22
S. Dawson, LP2005
朱守华, 北京大学物理学院
23
 TeV SUSY is a beautiful thing (GUT,
dark matter, aesthetic …), but …
朱守华, 北京大学物理学院
24
S. Dawson, LP2005
朱守华, 北京大学物理学院
25
 Shortcomings of TeV SUSY
not yet found Higgs  small hierarchy problem
(remind: in MSSM at LO mH<MZ)
 excess flavor and CP violation =>”CP problem”
 fast dim-5 proton decay etc.
 …

朱守华, 北京大学物理学院
26
 Seems MNew Physics >>TeV, did we miss
something important? Is that possible
that naturalness …?
朱守华, 北京大学物理学院
27
Why Split SUSY? (II)
 Failure of Naturalness of Cosmological
Constant ->…
朱守华, 北京大学物理学院
28
Akani-Hamed,
Pheno2005
朱守华, 北京大学物理学院
29
Fine tuning =>
 God
 mechanisms
Assuming UNKNOWN mechanism for
finely tuned CC is also applied to
Higgs sector…
朱守华, 北京大学物理学院
30
 GUT and Dark Matter instead of Naturalness are
guiding principles  Split Supersymmetry
N. Arkani-Hamed &S. Dimopoulos, hep-ph/0405159
 Split Supersymmetry can get
(a) GUT ( slightly improved)
(b) Dark Matter density
(c) higher Higgs mass (120~160 GeV)
(d) cures to most of TeV SUSY diseases etc.
朱守华, 北京大学物理学院
31
Akani-Hamed,
Pheno2005
朱守华, 北京大学物理学院
32
What is Split SUSY?
• SS has only one finely tuned and light Higgs
boson while other scalars are ultra heavy.
• Gaugino and Higgsino might be light.
• Effective Lagrangian at low energy, besides
kinetic terms, after integrating out higher
scalar mass:
朱守华, 北京大学物理学院
33
How to distinguish SS?
• Precisely measuring Higgsino-gaugino-Higgs
vertexes
e.g.
O(0.1 fb) hep-ph/0407108
• Scale of scalars is the most characteristic
feature of SS, but directly producing scalars
other than light Higgs boson is difficult.
• How to determine scalar mass?
(a) Long-lived gluino as a probe of scalar mass at
LHC
or
朱守华, 北京大学物理学院
34
Chargino production at LCs
(b) Chargino pair production at Linear colliders can
probe the properties of chargino S.Y. Choi et.al. (1999)
and (2000) and is sensitve to sneutrino mass.
朱守华, 北京大学物理学院
35
SS Parameter Space & Mixed Region
• Assuming gaugino mass
unification and dark
matter constraint:
0.094 <DMh2<0.129
G. Giudice & A. Romanino,
hep-ph/0406088
朱守华, 北京大学物理学院
36
Point Pa: Differential  and Forward-backward Asymmetry
(11)
10 TeV
1 TeV
朱守华, 北京大学物理学院
37
Point Pa: total 
(11), (12) and (22) are
all sensitive to sneutrino
mass up to 10 TeV for
lower M2 and .
朱守华, 北京大学物理学院
38
Point Pb: Total 
(22) Mode is most promising for higher
朱守华, 北京大学物理学院
M2 and  .
39
Summary for 2nd part
• Chargino pair production can probe the
sneutrino mass up to 10 TeV. Need further
simulation!
• It provides a very crucial method to
distinguish Split from TeV (normal) SUSY.
• All three modes (11), (12) and (22) should be
analyzed.
• Current and planning colliders can’t cover all
SS parameter space.
朱守华, 北京大学物理学院
40
Thanks for your attention!
朱守华, 北京大学物理学院
41