Transcript Document
201022107 김동규 201122149 정윤현 201022131 안진만 LOGO HERE LOGO HERE 1.Introduction LOGO HERE LOGO HERE LOGO HERE LOGO HERE LOGO HERE 1.1 Metallized Plastics 1.2 Thin Metal Oxide Films 1.3 Flake-Filled Polymers LOGO HERE LOGO HERE LOGO HERE LOGO HERE LOGO HERE Providing significant Gas barrier property 1 .Craking when flexd 2. Special processing environments 3. Complex fabrication LOGO HERE LOGO HERE 𝑃𝑐 : Permeability of composite 𝑃𝑝 : Permeability of polymer ∅ : Volume fraction of filler 𝛼 : Half of aspect ratio LOGO HERE LOGO HERE 1.Providng Gas barrier property 2.Flxible Aggregation reduces barrier property transparency LOGO HERE PML LBL LOGO HERE 2. Layer-by-layer Assembly LOGO HERE Conductivity Water repellency Optical filtering Gas barrier UV absorption LOGO HERE LOGO HERE 3.1 Clay-based films Non-clay 3.3.2Lbl for Gas Barrier nanocomposite-based films and Seperations 3.3 all-polymer films LOGO HERE Clay-Based Barrier Films How to decrease OTR? Increase clay space! Clay Clay Clay Clay Clay Clay 𝑂2 OTR : oxygen transmission Clay LOGO HERE Effect of 3 Parameter Composition of LbL - pH - Polymer - Concentration - clay - Dip time - layer LOGO HERE <LbL process> MMT : montmorillonite PEI : polyethyleneimine <Illustration of thin film> LOGO HERE PEI at pH 4 PEI : polyethyleneimine PEI at pH 10 LOGO HERE <Thickness as a function of bilayers deposited> LOGO HERE <Clay spacing and OTR as a function of pH> OTR : oxygen transmission LOGO HERE PEI at pH 10 <Illustration of clay deposition as a function of clay suspension pH> LOGO HERE <20-BL PEI/MMT coatings with varying clay concentration> BL : bilayer LOGO HERE <Illustration of the LbL process using 5 s and 1 min deposition times> LOGO HERE PEI PAH : poly(allylamine hydrochloride) CS : chitosan PAH CS LOGO HERE <OTR as a function of QLs and QL LbL process> QL : Quadlayer LOGO HERE <Illustration of Quadlayer> <cross-sectional TEM image of (PEI/PAA/PEI/MMT) on PS film> LOGO HERE <TL process> PAA : poly(acrylic acid) TL : Trilayer Coating Permeability Bare PET 17.58 10TL 1.92 10QL 0.57 LOGO HERE <Images of uncoated (left) and coated (middle 10TL, right 10QL) bananas> LOGO HERE <OTR of three quadlayer films fabricated with LAP, MMT, and VMT> LOGO HERE (a) 10BL PEI/VMT on PET (b) the outermost edge of 8BL LOGO HERE ORGANIC NANO PARTICLE INORGANIC Graphene nanoplatelet Cellulose nanocrystal MMT LOGO HERE Graphene Nano Platelets • High thermal conductivity • Excellent in-plane electrical conductivity • Very high Young’s modulus and extremely high intrinsic strength LOGO HERE LBL FILM PREPERATION • • • • Reduce OTR Can act as oxygen gas barrier and H2/CO2 gas separation membrane Maintain oxygen barrier at high humidity Produce highly conductive films LOGO HERE LOGO HERE Film growth and characterization LOGO HERE Cellulose nanocrystals • • • • Do not perform as well as platelets Completely renewable Non-toxic materials PLA substrate LOGO HERE CMC: Carboxymethyl cellulose • CMC → NFC (Nanofibrilated cellulose) • Deposit many layers (50 layers) of PEI/NFC LOGO HERE Thickness of Chitosan/Cellulose Nanocrystals nanocomposite coating LOGO HERE PSS (Polystyrene sulfonate) PAH (Poly allylamine hydrochloride) Ionically-Crosslinking • High density • Separate gas with high selectivity LOGO HERE Polyacrylic acid Super Gas Barrier • Excellent durability • Moisture resistance • OTR(<0.005) LOGO HERE High Gas Selectivity and Resonable Flux LOGO HERE 4. Perspective & Conclusion LOGO HERE • Polarity ↑,OTR ↓ • Crystallinity ↑,OTR↓ • Cohesive energy density ↑ OTR↓ LOGO HERE LOGO HERE Future • • • • lamination post-assembly annealing Crosslinking alternative solvents LOGO HERE - F. J. Boerio , G. D. Davis , J. E. deVries , C. E. Miller , K. L. Mittal , R. L. Opila , H. K. Yasuda , Crit. Rev. in Surf. Chem. 1993 , 3 , 81 - M. A. Priolo , D. Gamboa , J. C. Grunlan , ACS Appl. Mater. Interfaces 2010 , 2 , 312 - M. A. Priolo , D. Gamboa , K. M. Holder , J. C. Grunlan , Nano Lett. 2010 , 10 , 4970 - A. Laachachi , V. Ball , K. Apaydin , V. Toniazzo , D. Ruch , Langmuir 2011 , 27 , 13879 - D. A. Hagen , C. Box , S. Greenlee , F. Xiang , O. Regev , J. C. Grunlan , RSC Adv. 2014 , 4 , 18354 - K. M. Holder , B. R. Spears , M. E. Huff , M. A. Priolo , E. Harth , J. C. Grunlan , Macromol. Rapid Commun. 2014 , 35 , 960 - P. Stroeve , V. Vasquez , M. A. N. Coelho , J. F. Rabolt , Thin Solid Films 1996 , 284 , 708 - R. Rajasekar , N. H. Kim , D. Jung , T. Kuila , J. K. Lim , M. J. Park , J. H. Lee , Compos. Sci. Technol. 2013 , 89 , 167 . LOGO HERE Q&A LOGO HERE Q1.Tortuosity model 에 대해 설명하고 이를 바탕으로 나노복합재료의 Gas Barrier 특성을 증가시키는 방법을 설명하여라. 나노 복합재료를 통과하는 기체는 결정성이 높은 파티클 을 피해서 확산되고 tortuosity path가 증가하게 되어 낮은 OTR값을 갖게된다. 파티클의 aspect ratio 를 크게, 파티클의 부피분율을 증가, 기체의 확산방향에 수직하게 배향 시켜 나노복합재료의 Gas barrier 특성을 향상 시킬수 있다. LOGO HERE Q2.LBL 방법을 통해 다층 필름을 만드는 방법을 간단히 설명하여라. 음으로 대전시킨 substrate 를 양전하를 띠는 물질이 녹아있는 용액에 수초~수분 간 넣은 후 중성화된 물로 씻어내면 정전기적 인력에 의해 양전하 물질이 층을 쌓 게 되고 이것을 음전하를 띠는 물질이 녹아있는 용액에 담근 후 꺼내 씻어내면 음전하를 띠는 물질이 층을 쌓이게 된다. 이러한 과정을 반복 하면 다층의 필름을 얻을 수 있다. LOGO HERE Q3. Clay layer 사이의 거리가 증가할수록 산소 투과속도가 낮아지는 이유를 설명하시오. Clay layer 거리 > 산소 원자 지름 산소가 이동하는 길이 더 구불구불하여 이동 거리가 증가하기 때문이다. LOGO HERE Q4. LbL 제조 시, Dip time이 짧을수록 좋은 이유를 설명하시오. 시간이 짧을수록 고분자 사슬이 완화할 시간이 없으므로 두꺼운 고분자 층을 얻을 수 있기 때문이다. LOGO HERE Q5. PP, PVC, PVDC, EVOH를 가스 베리어 필름으로 사용하였을 때 기체가 투과하는 속도가 빠른 순서대로 나열하시오. A: PP > PVC > PVDC > EVOH LOGO HERE Q6. 다음 빈 그래프에 가스 베리어 필름의 특성을 고려하여 알맞은 위치에 써 넣으시오. A: Clay Based Lbl Graphene Based Lbl All-Polymer Lbl Polymer (EVOH)