Transcript Document

201022107 김동규
201122149 정윤현
201022131 안진만
LOGO
HERE
LOGO
HERE
1.Introduction
LOGO
HERE
LOGO
HERE
LOGO
HERE
LOGO
HERE
LOGO
HERE
1.1 Metallized Plastics
1.2 Thin Metal Oxide Films
1.3 Flake-Filled Polymers
LOGO
HERE
LOGO
HERE
LOGO
HERE
LOGO
HERE
LOGO
HERE
Providing significant Gas barrier property
1 .Craking when flexd
2. Special processing environments
3. Complex fabrication
LOGO
HERE
LOGO
HERE
𝑃𝑐 : Permeability of composite
𝑃𝑝 : Permeability of polymer
∅ : Volume fraction of filler
𝛼 : Half of aspect ratio
LOGO
HERE
LOGO
HERE
1.Providng Gas barrier property
2.Flxible
Aggregation reduces barrier
property transparency
LOGO
HERE
PML
LBL
LOGO
HERE
2. Layer-by-layer
Assembly
LOGO
HERE
Conductivity
Water repellency
Optical filtering
Gas barrier
UV absorption
LOGO
HERE
LOGO
HERE
3.1 Clay-based films
Non-clay
3.3.2Lbl
for Gas Barrier
nanocomposite-based films
and Seperations
3.3 all-polymer films
LOGO
HERE
Clay-Based Barrier Films
How to decrease OTR?
Increase clay space!
Clay
Clay
Clay
Clay
Clay
Clay
𝑂2
OTR : oxygen transmission
Clay
LOGO
HERE
Effect of 3 Parameter
Composition of LbL
- pH
- Polymer
- Concentration
- clay
- Dip time
- layer
LOGO
HERE
<LbL process>
MMT : montmorillonite
PEI : polyethyleneimine
<Illustration of thin film>
LOGO
HERE
PEI at pH 4
PEI : polyethyleneimine
PEI at pH 10
LOGO
HERE
<Thickness as a function of bilayers deposited>
LOGO
HERE
<Clay spacing and OTR as a function of pH>
OTR : oxygen transmission
LOGO
HERE
PEI
at pH 10
<Illustration of clay deposition
as a function of clay suspension pH>
LOGO
HERE
<20-BL PEI/MMT coatings
with varying clay concentration>
BL : bilayer
LOGO
HERE
<Illustration of the LbL process using 5 s and 1 min deposition times>
LOGO
HERE
PEI
PAH : poly(allylamine hydrochloride)
CS : chitosan
PAH
CS
LOGO
HERE
<OTR as a function of QLs and QL LbL process>
QL : Quadlayer
LOGO
HERE
<Illustration of Quadlayer>
<cross-sectional TEM image of
(PEI/PAA/PEI/MMT) on PS film>
LOGO
HERE
<TL process>
PAA : poly(acrylic acid)
TL : Trilayer
Coating
Permeability
Bare PET
17.58
10TL
1.92
10QL
0.57
LOGO
HERE
<Images of uncoated (left) and coated (middle 10TL, right 10QL) bananas>
LOGO
HERE
<OTR of three quadlayer films fabricated
with LAP, MMT, and VMT>
LOGO
HERE
(a) 10BL PEI/VMT on PET
(b) the outermost edge of 8BL
LOGO
HERE
ORGANIC
NANO
PARTICLE
INORGANIC
Graphene
nanoplatelet
Cellulose
nanocrystal
MMT
LOGO
HERE
Graphene Nano Platelets
• High thermal conductivity
• Excellent in-plane electrical conductivity
• Very high Young’s modulus and extremely
high intrinsic strength
LOGO
HERE
LBL FILM PREPERATION
•
•
•
•
Reduce OTR
Can act as oxygen gas barrier and H2/CO2 gas separation
membrane
Maintain oxygen barrier at high humidity
Produce highly conductive films
LOGO
HERE
LOGO
HERE
Film growth and characterization
LOGO
HERE
Cellulose nanocrystals
•
•
•
•
Do not perform as well as platelets
Completely renewable
Non-toxic materials
PLA substrate
LOGO
HERE
CMC: Carboxymethyl cellulose
• CMC → NFC (Nanofibrilated cellulose)
• Deposit many layers (50 layers) of PEI/NFC
LOGO
HERE
Thickness of Chitosan/Cellulose Nanocrystals
nanocomposite coating
LOGO
HERE
PSS (Polystyrene sulfonate)
PAH (Poly allylamine
hydrochloride)
Ionically-Crosslinking
• High density
• Separate gas with high selectivity
LOGO
HERE
Polyacrylic acid
Super Gas Barrier
• Excellent durability
• Moisture resistance
• OTR(<0.005)
LOGO
HERE
High Gas Selectivity and Resonable Flux
LOGO
HERE
4. Perspective & Conclusion
LOGO
HERE
• Polarity ↑,OTR ↓
• Crystallinity ↑,OTR↓
• Cohesive energy density ↑
OTR↓
LOGO
HERE
LOGO
HERE
Future
•
•
•
•
lamination
post-assembly annealing
Crosslinking
alternative solvents
LOGO
HERE
- F. J. Boerio , G. D. Davis , J. E. deVries , C. E. Miller , K. L. Mittal ,
R. L. Opila , H. K. Yasuda , Crit. Rev. in Surf. Chem. 1993 , 3 , 81
- M. A. Priolo , D. Gamboa , J. C. Grunlan , ACS Appl. Mater.
Interfaces 2010 , 2 , 312
- M. A. Priolo , D. Gamboa , K. M. Holder , J. C. Grunlan , Nano
Lett. 2010 , 10 , 4970
- A. Laachachi , V. Ball , K. Apaydin , V. Toniazzo , D. Ruch , Langmuir
2011 , 27 , 13879
- D. A. Hagen , C. Box , S. Greenlee , F. Xiang , O. Regev ,
J. C. Grunlan , RSC Adv. 2014 , 4 , 18354
- K. M. Holder , B. R. Spears , M. E. Huff , M. A. Priolo , E. Harth ,
J. C. Grunlan , Macromol. Rapid Commun. 2014 , 35 , 960
- P. Stroeve , V. Vasquez , M. A. N. Coelho , J. F. Rabolt , Thin Solid
Films 1996 , 284 , 708
- R. Rajasekar , N. H. Kim , D. Jung , T. Kuila , J. K. Lim , M. J. Park ,
J. H. Lee , Compos. Sci. Technol. 2013 , 89 , 167 .
LOGO
HERE
Q&A
LOGO
HERE
Q1.Tortuosity model 에 대해 설명하고 이를 바탕으로 나노복합재료의 Gas Barrier 특성을
증가시키는 방법을 설명하여라.
나노 복합재료를 통과하는 기체는 결정성이 높은 파티클
을 피해서 확산되고 tortuosity path가 증가하게 되어 낮은
OTR값을 갖게된다.
파티클의 aspect ratio 를 크게, 파티클의 부피분율을 증가,
기체의 확산방향에 수직하게 배향 시켜 나노복합재료의
Gas barrier 특성을 향상 시킬수 있다.
LOGO
HERE
Q2.LBL 방법을 통해 다층 필름을 만드는 방법을 간단히 설명하여라.
음으로 대전시킨 substrate 를 양전하를 띠는 물질이 녹아있는 용액에 수초~수분
간 넣은 후 중성화된 물로 씻어내면 정전기적 인력에 의해 양전하 물질이 층을 쌓
게 되고 이것을 음전하를 띠는 물질이 녹아있는 용액에 담근 후 꺼내 씻어내면
음전하를 띠는 물질이 층을 쌓이게 된다. 이러한 과정을 반복 하면 다층의 필름을
얻을 수 있다.
LOGO
HERE
Q3. Clay layer 사이의 거리가 증가할수록 산소 투과속도가 낮아지는 이유를 설명하시오.
Clay layer 거리 > 산소 원자 지름
산소가 이동하는 길이 더 구불구불하여
이동 거리가 증가하기 때문이다.
LOGO
HERE
Q4. LbL 제조 시, Dip time이 짧을수록 좋은 이유를 설명하시오.
시간이 짧을수록 고분자 사슬이 완화할 시간이 없으므로
두꺼운 고분자 층을 얻을 수 있기 때문이다.
LOGO
HERE
Q5. PP, PVC, PVDC, EVOH를 가스 베리어 필름으로 사용하였을 때
기체가 투과하는 속도가 빠른 순서대로 나열하시오.
A: PP > PVC > PVDC > EVOH
LOGO
HERE
Q6. 다음 빈 그래프에 가스 베리어 필름의 특성을 고려하여 알맞은 위치에 써 넣으시오.
A:
Clay Based Lbl
Graphene Based Lbl
All-Polymer Lbl
Polymer (EVOH)