다운로드

Download Report

Transcript 다운로드

Chapter 6. Metal Matrix Composites
6. Metal Matrix Composites
MMC system :
1. Boron/aluminum
2. Carbon/aluminum
3. Al2O3/Al and Al2O3/Mg
4. SiC/Al
5. Eutectic or in situ
composites
(really a subclass of MMCs)
Functional Metal Matrix Composites
Advantage of MMC
High specific strength/ modulus
Improvement of Heat Resistance
Low Thermal Expansion/heat Conductivity
Functional Gradient Property
Why do we need to fabricate MMC ?
Current development and Aim of MMC Component Technology
연구내용
개발현황 및 문제점
원천기술 목표
자동차 부품
주철→Al→Mg으로 경량화
내열Mg MMC개발
Cylinder block
Mg의 경우 Creep, 열피로 강도 부족
creep rate~1.5х10-8/s, 항복강도~200MPa,
고성능 엔진에 따라 고기능 재료 요구
감쇠특성 ~1.0×10-2, 탄성계수 ~50GPa
Ti → Ti6Al4V → Ti6Al7Nb → Ti HAp코팅
경사기능 Ti/HAp MMC개발
바이오 부품
강도부족
Implant
생체적합성 부족 (골성장 방해, 인체유독성)
전자 부품
packaging
현 Ti합금 수준의 강도확보
in-vivo test 합격목표
Package : Kovar(Fe-Ni),CuW,CuMo
고전도·저팽창 경량 Al/SiCp 개발
Substrate : Alumina, Beryllia, SiC, AlN
열전도:~170W/mK, CTE:~8×10-6/K,
전도성 / 팽창 / 경량의 조화재료 요구
Density:~3g/cm3
인용: 부산대기능성첨단금속복합재료연구팀자료
MMC for Airplane, Wind power, Yacht
인용: 부산대기능성첨단금속복합재료연구팀자료
Space trip starts from Development of Composites
인용: 부산대기능성첨단금속복합재료연구팀자료
How is car engine operating? –DVD
4 cyle enine : Intake, compression, explosion, exhaustion?
인용: 부산대 기능성첨단금속복합재료 연구팀자료
MMC Application for Engine
포르쉐 911 모델에 사용되
는 실린더 블록은 복합재료
를 사용하여 만들었다.
자동차에 이용되는 엔진 피스톤
부분에 복합재료가 사용된다.
인용: 부산대기능성첨단금속복합재료연구팀자료
Design of Automotive engine cylinder bore
high wear resistance, h. strength, h.
compressive strength,
인용: 부산대기능성첨단금속복합재료연구팀자료
6.1 Fabrication of MMCs
- A simple classification of metal matrix
composite fabrication methods
1. Solid state fabrication techniques
2. Liquid state fabrication techniques
3. In situ fabrication techniques
6.1 Fabrication of MMCs
- In solid state fabrication and liquid state fabrication,
it may be necessary to coat the fiber or prepare
fiber/matrix performs for later consolidation and/or
secondary fabrication.
→ Fiber surfaces may be coated with suitable
materials to
(a) improve wettability and adhesion
(b) prevent any adverse chemical interaction
between the fiber and matrix at elevated
temperatures
6.1.1 Solid State Fabrication
- Boron fiber and aluminum foils, resin-based
fugitive binder
Functional MMC fabrication Technology1
Preform Fabrication
MMC 구조설계 및 해석
Problem강화재의 편석및 예비성형체의 변형
부피분율조정및 정밀 형상 제조의 어려움
Solution
Binder slurry additives 조절
Rapid prototype, P/M 기술 도입
Silica colloid inorganic binder
Mutual
repulsion
문제점
기능성 MMC특성 평가기술 미흡
열·기계적 변형/FGM 해석모델 미흡
MMC특성평가 제어기술 확립
해결 방안 열적·기계적 변형 / FGM 모델제시
Attraction
Minimization of preform deformation
Cationic starch organic binder
Flocking effect between inorganic binder
and reinforcements
Graphite + Whisker
Cationic polyacrylamide
Minimization of anisotropic distribution of
Flocculation
reinforcements
Dodecylbenzenesulfonate
Removal of gas pore
Graphite + Whisker + Starch
Preform 제조시의 slurry additives의 영향
경사기능 복합재료의 구조해석 예
6.1.1 Solid State Fabrication
- Powder metallurgy techniques : discontinuous
fibers or whiskers
→ Matrix metal powder and fibers are mixed
and then pressed to consolidate
→ Sintering
6.1.1 Solid State Fabrication
- Plasma spray, CVD or PVD of matrix material
onto properly laid-up fibers followed by some
kind of consolidation technique(vacuum hot
press, hot isostatic pressing)
1. Plasma spray : very versatile technique of
joining any two dissimilar materials
2. Low-Pressure Plasma Deposition(LPPD)
: very flexible method of producing composites
with different volume fractions of reinforcement
and matrix phase distribution, bonding, and
so on
6.1.1 Solid State Fabrication
Good bonding is not
obtained
-> Roll bonding and explosive
bonding are also used to join two
dissimilar metals.
Krishan K. Chawla, Composite materials science and engineering, Springer-Verlag, (1998)
6.1.2 Liquid State Fabrication
- All methods in this category involve liquid metal
(matrix) infiltration of fibers or fiber preforms.
→ The liquid penetration around the fiber
bundles can occur by capillary action,
vacuum infiltration, or pressure infiltration.
- Squeeze Casting
: The application of high pressures to the liquid
metal during solidification.
6.1.2 Liquid State Fabrication
→ Pore free, fine grained aluminum alloy
components having superior properties.
6.1.2 Liquid State Fabrication
1. A porous fiber preform is inserted into the die
2. Molten metal is poured into the preheated die
3. The applied pressure(70-100MPa)makes the
molten aluminum penetrate the fiber preform
and bond the fibers.
기능성금속복합재료의 제조기술 2
Squeeze Infiltration 공정
문제점
해결 방안
수축공, 기공 등의 주조결함 발생
균열발생, 이형결함
Preform 예열 및 용탕온도 제어
가압력 및 가압속도 제어
부분복합화 Al MMC piston의 제조공정상 문제
용탕응고유동해석
부분가압에 따른 응고경계조건 변화
문제점
Preform 삽입에 따른 응고유동 변화
해결 방안
다공성 응고유동 모델 확립
응고해석 S/W 개발
단일소재 부품의 용탕응고유동 해석 사례 (부
산대)
인용: 부산대기능성첨단금속복합재료연구팀자료
전자 패키징 재료를 위한 금속 복합재료의 응용
(a)침투방법에 의하여 만들어진 70vol%SiCp/Al 금속복합재료의 미세구조
(b) 전자패키징 재료의 응용
인용: 부산대기능성첨단금속복합재료연구팀자료
6.1.3 In Situ Fabrication Techniques
- Controlled unidirectional solidification of a eutectic alloy can
result in a two-phase microstructure with one of the phases,
present in lamellar or fiber form, distributed in the matrix
At low solidification rates
-> The TaC fibers are square in cross section
At higher solidification rates
-> Blades of TaC form
The number of fibers per square centimeter
also increased with increasing solidification
rate
6.1.2 Liquid State Fabrication
Krishan K. Chawla, Composite materials science and engineering, Springer-Verlag, (1998)
6.2 Interface in Metal Matrix Composites
- In MMCs, as in other composites, we can have
mechanical bonding as well as chemical bonding.
6.2.1 Mechanical Bonding
Mechanical bonding
restores the strength
to levels
Achieved in reaction
bonding
Krishan K. Chawla, Composite materials science and engineering, Springer-Verlag, (1998)
6.2.2 Chemical Bonding
- Some controlled amount of reaction at the
interface may even be desirable for obtaining
strong bonding between the fiber and the matrix.
- Too thick an interaction zone, however, will
adversely affect the composite properties.
- Improvements in interfacial bonding in MMCs
are frequently obtained by two methods
: Fiber surface treatment, Matrix modification
6.2.2 Chemical Bonding
Fiber Surface Treatment
(a) To improve wettability and
adhesion
(b) To prevent any adverse chemical
interaction between the fiber
and the matrix at elevated
temperature
Krishan K. Chawla, Composite materials science and engineering, Springer-Verlag, (1998)
6.2.2 Chemical Bonding
In the case of carbon fibers in aluminum, poor
wettability is a major problem.
- The idea is to alter the matrix composition in
such a way that dopants would react with the
fiber.
- In a controlled manner to give a thin fiber
surface layer that will be wetted by the liquid
matrix alloy.