Proton 개수의 불확실성이 systematics에 미치는 영향

Download Report

Transcript Proton 개수의 불확실성이 systematics에 미치는 영향

LS Subgroup Meeting
Feb. 26.2007
Daejung Kong
At LS Meeting (Feb. 14. 2007)
1. Proton 개수의 불확실성이 systematics에 미치는 영향 ? (계산 또는 MC) Kong
2. LAB의 성분분석을 통한 탄소의 n에 대한 percentage 도출 - 어디서, 어떻게,
시간 스캐일 등 - Kong
3. Radiopurity level (from other references ) ?? - Kong
4. 현재 LiqScint R& D 최근 결과 요약 (mostly Daya Bay TDR) - J.Kim
5. Gd loading status - Joo
6. PPO/POPOP purification before/after results (transparency and Light
Yield) - Joo
TDR 건 : LS Chapter : SNU, KNU로 부터 두 내용을 합쳐 약간 정리한 뒤
2~3일 안에 멜로 distribution 함 - Joo.
draft 만들기 위하여 각자 수정 들어감.
1. Proton 개수의 불확실성이 systematics에 미치는 영향 ?
2. LAB의 성분분석을 통한 탄소의 n에 대한 percentage 도출 ?
3. Radiopurity level (from other references ) ?
Gas Chromatography (GC) with Mass Spectrometry (MS)
GC-MS : A mass spectrometer creates charged particles (ions) from
molecules. It then analyzes those ions to provide information about the
molecular weight of the compound and its chemical structure. There
are many types of mass spectrometers and sample introduction
techniques which allow a wide range of analyses. This discussion will
focus on mass spectrometry as it's used in the powerful and widely
used method of coupling Gas Chromatography (GC) with Mass
Spectrometry (MS).
Gas Chromatograph (GC) : A mixture of compounds to be analyzed is
initially injected into the GC where the mixture is vaporized in a heated
chamber. The gas mixture travels through a GC column, where the
compounds become separated as they interact with the column. The
chromatogram on the right shows peaks which result from this
separation. Those separated compounds then immediately enter the mass
spectrometer.
Interpreting spectra
A simple spectrum, that of methanol, is shown here. CH3OH+. (the molecular ion) and fragment ions appear
in this spectrum. Major peaks are shown in the table next to the spectrum. The x-axis of this bar graph is the
increasing m/z ratio. The y-axis is the relative abundance of each ion, which is related to the number of times
an ion of that m/z ratio strikes the detector. Assignment of relative abundance begins by assigning the most
abundant ion a relative abundance of 100% (CH2OH+ in this spectrum). All other ions are shown as a
percentage of that most abundant ion. For example, there is approximately 64% of the ion CHO+ compared
with the ion CH2OH+ in this spectrum. The y-axis may also be shown as abundance (not relative). Relative
abundance is a way to directly compare spectra produced at different times or using different instruments.
EI ionization introduces a great deal of energy into molecules. It is known as a "hard" ionization
method. This is very good for producing fragments which generate information about the structure of the
compound, but quite often the molecular ion does not appear or is a smaller peak in the spectrum.
Of course, real analyses are performed on compounds far more complicated than methanol. Spectra
interpretation can become complicated as initial fragments undergo further fragmentation, and as
rearrangements occur. However, a wealth of information is contained in a mass spectrum and much can be
determined using basic organic chemistry "common sense".
Specification of GC-MS (KBSI)
한글 장비명
기체 질량 분석기
영문 장비명
GC-MS/MS Spectrometer
모
델
명
Quattro Ⅱ
제
작
사
VK
설치 장소
공동활용여부
기기 코드
원리 및 특징
유기혼합물의 분리 및 물질 확인이 주 목적인 기기로 혼합물을 성분별로
분리하는 부분(GC)과 물질을 확인하는 부분(MS)으로 나뉜다.
휘발성이 좋은 혼합물을 주로 사용하며, GC로 분리된 시료는 적당한
interface를 거쳐 질량분석기에 이르는데 진공 상태에서 이온화시켜
생성되는 여러 질량의 이온들을 mass filter인 사중극자 분석관을 이용하여
질량스펙트럼을 얻어 물질을 확인한다.
기존 물질의 확인을 위해서는 library가 이용될 수도 있다.
주요구성및 성능
기초과학지원연구원, 대구센터 GC-Split/Splitless, On-column injector
Mass-Mass range : 2 to 4,000amu/Scan rate : 500amu/sec
Library-wiley, NIST
내.외부 공동활용가능
EI/CI Source-Solid/Direct injection probe LSIMS(fast ion bambadment)/DCI probe
DA204
주요구성및 성능
Mass range : 10∼800amu
Ionization mode : EI, CI, NCI
MS Analyzer : Quadrupole
Library : Wiley 275,000
사용예
새로운 유기물의 구조 결정
의약품 분석
환경오염 유기물 분석
농약, 석유화학 제품, 식품 첨가물, 생화학 물질 등의 확인 및 구조 결정
BNL Presentation
Proton density of various components
PXE (PhenylXylylEthane) : C16H18, specific gravity : 0.992
Molecular weight C16H18= 12x16+1x18 = 210
PXE 1 [m3]= 0.992[kg3] 0.992[g]/210[g] x 106 x NA
= 0.992/210 x 106 x 6.0221415 × 1023 = 0.028447449 x 1029
# of H in PXE 1 [m3] = 18 x 0.028447449 x 1029
= 0.512 x 1029
PC (Pseudocumene) : C6H3(CH3)3  C9H12, density : 0.88
Molecular weight C9H12 = 9x12+1x12 = 120
PC 1 [m3]= 0.88[kg3] 0.88[g]/120[g] x 106 x NA
= 0.88/120 x 106 x 6.0221415 × 1023 = 0.044162371 x 1029
# of H in PC 1 [m3] = 12 x 0.044162371 x 1029
= 0.530 x 1029
Avogadro's number, NA = 6.0221415 × 1023
Dodecane : C12H26, specific gravity : 0.753
Molecular weight C12H26 = 12x12+1x26 = 170
Dodecane 1 [m3]= 0.753[kg3] 0.753[g]/170[g] x 106 x NA
= 0.753/170 x 106 x 6.0221415 × 1023 = 0.0266745 x 1029
# of H in Dod 1 [m3] = 26 x 0.0266745 x 1029
= 0.694 x 1029
Tetradecane : C14H30, specific gravity : 0.763
Molecular weight C14H30 = 14x12+1x30 = 198
Tetradecane 1 [m3]= 0.763[kg3] 0.763[g]/198[g] x 106 x NA
= 0.763/198 x 106 x 6.0221415 × 1023 = 0.02320654 x 1029
# of H in Tetra 1 [m3] = 30 x 0.02320654 x 1029
= 0.696 x 1029
20% PXE of 10.32m3 = 2.064 m3 x 0.512 x 1029 /m3 = 1.06 x 1029
80% Dod of 10.32m3 = 8.256 m3 x 0.694 x 1029 /m3 = 5.73 x 1029
Total free proton number
= 6.79 x 1029
KASKA 7.6m3 of liquid scintillator
Total free proton number = 7.6m3 x 0.77 x 1029 /m3
RENO 19.7m3 of liquid scintillator
= 5.85 x 1029
Proton number of LAB
LAB concentartion
# of H [m-3]
difference
remarks
n=9 : 0.47%, n=10 : 9.7 %
n=11: 33.85% n=12 : 34.72%
n=13: 20.83% n=14 :0.43 %
0.62968 x 1029
0.0
0.0%
ISU Specification (GC-MS)
n=10 : 21%, n=11 : 21 %
n=12 : 35 %
n=13 : 11.5%, n=14 : 11.5 %
0.6298 x 1029
0.00012
0.01%
ISU discussion
n=10 : 7.17%, n=11 : 27.63 %
n=12 : 34.97 %
n=13 : 30.23 %
0.63095 x 1029
0.00127
0.20%
GC-MS test result
at KNU
LAB
Mass distribution of 1st Peak
C16H26
C17H28
C18H30
C19H32
7.17%
27.63%
34.97%
30.23%
Decane
Dodecane
KF-50
KF-70
1. Proton 개수의 불확실성이 systematics에 미치는 영향 ?
2. LAB의 성분분석을 통한 탄소의 n에 대한 percentage 도출 ?
3. Radiopurity level (from other references ) ?
Daya Bay (Double Chooz) : 10-13 g/g (Th, U, K)
RENO ?