Transcript 전 자 기 학
Chapter 8. The Steady Magnetic Field 1. Biot-Savart Law dH 2 I1dL1 a R12 (A/m) 4R122 cf) dE 2 dQ1a R12 (V/m) 4o R122 v (Eq.(5) in Sec.5.2) t Dircet current only : v is not a function of t J J 0 dH IdL a R 4R 2 IdL a R H 4R 2 목원대학교 전자정보통신공학부 전자기학 J dS 0 S Current Flow around a closed path!! 8-1 Surface current density : K uniform current density : I Kb Nonuniform current density : I KdN IdL KdS Jdv K a R dS S 4R 2 J a R dv vol 4R 2 H H r a r z a z R12 r r a z a z a z a z a R12 z 2 dH 2 H2 목원대학교 전자정보통신공학부 전자기학 dL dz a z Idz a z ( a z a z ) 4 ( 2 z 2 ) 3 / 2 Idz a z ( a z a z ) Ia 2 4 ( 2 z 2 )3 / 2 z 4 2 2 z 2 Ia dz 4 ( 2 z 2 ) 3 / 2 H2 I 2 a 8-2 IdL a R dL dza z z tan 4R 2 dz sec 2 d a R cos a sin a z dH dH I sec 2 da z (cos a sin a z ) 4 ( 2 z 2 ) I sec 2 d cos a 4 2 sec 2 2 I 1 4 H dH 목원대학교 전자정보통신공학부 전자기학 I cos a d 4 (sin 2 sin 1 )a 8-3 2. Amperes’s Circuital Law • The line integral of H about any closed path is exactly equal to the direct current enclosed by that path. H dL I 2 2 0 0 H dL H d H d H 2 I H I 2 H I 2 a : I encl ( a b) 2 I I 2 H a 2a 2 c : H 0 (Shielding ) 목원대학교 전자정보통신공학부 전자기학 2 b2 b c : 2H I I 2 2 c b I c2 b2 H 2 c 2 b 2 8-4 The magnetic field intensity is continuous at all the conductor boundaries. *Shielding H can not vary w ith x or y. H y , H z 0. H x only exist. H x1 L H x 2 ( L) K y L H x1 H x 2 K y H x 3 H x 2 K y H x 3 H x1 Hx 1 1 K y ( z 0) H x K y ( z 0) 2 2 1 H K aN 2 A second sheet with K K y a y at z h. H K a N (0 z h) H 0 ( z 0, z h) 목원대학교 전자정보통신공학부 전자기학 8-5 Solenoid Toroid H dL H 2 K a 2 ( o a) 목원대학교 전자정보통신공학부 전자기학 8-6 3. Curl • Gauss’s law ↔ Divergence : Ampere’s law ↔ Curl H y x H y (x) (y ) H d L H y H yo yo x 2 x 2 H x y H x (y ) (x) H yo x H xo y 2 y 2 H y H x x y J z lim x , y 0 H dL H xy x y xy J z xy ( ΔI J z xy ) H x H dL H z H y , J lim H dL H x H z , J x lim y y , z 0 yz z , x 0 zx y y z z x 목원대학교 전자정보통신공학부 전자기학 8-7 ( curl H) N lim S N 0 H dL S N ax H z H y H y H x H x H z curl H a a a x y z x z x y x z y Hx ay y Hy az H z Hz Curl: a line integral per unit area. Circulation per unit area. Non-time-varying conditions H J The point form of Ampere’s circuital law E dL 0 E 0 목원대학교 전자정보통신공학부 전자기학 8-8 4. Stokes’ Theorem H dL S S H dL S ( H) N ( H) a N ( H) a N S ( H) S H dL ( H) dS S 목원대학교 전자정보통신공학부 전자기학 8-9 ( H) dS J dS H dL I S • • S Stokes’ theorem relates a surface integral to a closed integral. The divergence theorem relates a volume integral to a closed surface integral. A T vol ( A)dv Tdv vol Divergence Theorem : ( A) dS Tdv 0 S vol ( The applicatio n of Stokes' theorem to a closed surface 0) A 0 H J J 0 목원대학교 전자정보통신공학부 전자기학 8-10 5. The Magnetic Flux and Magnetic Flux Density • • Define: The Magnetic Flux Density The permeability o 4 10 7 H/m Magnetic Flux B dS Wb S B dS 0 (cf, D dS Q) S B 0 S • B o H (free space only) Maxwell’s equations(static electric field & steady magnetic field) D E 0 H J B 0 D oE B o H E V D dS Q dv E dL 0 H dL I J dS B dS 0 S vol v S S 목원대학교 전자정보통신공학부 전자기학 8-11 H I 2 B o H ( a b) o I a 2 B dS S 6. d 0 b a o I Id b a ddza o ln 2 2 a The Scalar and Vector Magnetic Potentials Define H Vm H J Vm The curl of the gradient of any scalr is identicall y zero. If H is to be defined as the gradient of a scalar megnetic potential, then current density must be zero throughou t the region in which t he scalar megnetic potential is so defined. H Vm 목원대학교 전자정보통신공학부 전자기학 (J 0) 8-12 • The scalar magnetic potential also satisfies Laplace’s equation. B o H 0 o ( Vm ) 0 2Vm 0 (J 0) J 0 in the region a b I H a 2 I 1 Vm V m 2 Vm I I Vm 2 2 At P, 9 17 4 , 4 , 4 ,, or - 7 15 23 ,,, 4 4 4 The electric potential V is single valued once a zero reference is assigned. Vm is not a single - valued function of position. 목원대학교 전자정보통신공학부 전자기학 8-13 • The reason for this multivaluedness b E dL 0, therefor e V E dL (independe nt of path) H 0 (wherever J 0) but H dL I E 0 and ab a b Vm,ab H dL (specified path) a • Vector Magnetic Potential(A), useful in studying radiation from antennas, from apertures, and radiation leakage from transmission lines, waveguides, and microwave ovens B 0 H 1 o B A A H J 목원대학교 전자정보통신공학부 전자기학 1 o A A o IdL 4R dA o IdL 4R 8-14 Vector magnetic potential field about a differential filament IdL KdS Jdv A o IdL 4R o KdS S 4R A dL dza z dA o IdL o Idza z 4R 4 2 z 2 o Idz dA z dH 4 z 2 1 o dA 2 o Jdv vol 4R A , dA 0, dA 0 1 dAz o Idz a 4 2 z 2 목원대학교 전자정보통신공학부 전자기학 3/ 2 a 8-15 7. Derivation of the Steady-Magnetic-Field Laws o Jdv IdL a R (3) B H (32) B A (46) A (51) o 2 vol ? 4R 4R Eq. (51) is correct and agrees with the three definition s (3), (32), and (46). H Prove Ampere’s circuital law in point form A ( A) 2 A 2 A 2 Axa x 2 Aya y 2 Aza z (The Laplacian of a vector) v dv 2V v vol 4 R o o J dv Ax o x 2 Ax o J x , 2 Ay o J y , 2 Az o J z vol 4R V A 0 (p. 264 - 265) H 1 o 목원대학교 전자정보통신공학부 전자기학 A 1 o [( A) 2 A] 2 A o J 1 o o J J 8-16 Between conductors , J 0 2 A o J 0 Cartesian coordinate s : 2 A 2 Ax a x 2 Ay a y 2 Az a z Cylindrica l coordinate s : 2 A 2 A a 2 A a 2 Az a z However, 2 A 2 Az z 1 Az Therefore, Az 1 2 Az 2 Az 2 0 2 2 z 1 Az 0 Az is a function only of : 2 Az C1 ln C 2 Assume a zero reference at b, Az C1 ln A b Az C C a 1 a B H 1 a o 2 H dL I 0 Az C1 o a da 2C1 o C1 o I 2 o I b I ln and H 2 2 목원대학교 전자정보통신공학부 전자기학 8-17