All Particle Simulation of a Cathodic Arc Plasma I. J. Cooper
Download
Report
Transcript All Particle Simulation of a Cathodic Arc Plasma I. J. Cooper
All Particle Simulation of
a Cathodic Arc Plasma
I. J. Cooper
D. R. McKenzie
Tim Ruppin and Andrew Rigby
Traces left by an arc on tungsten cathode
Vacuum Arc
• High Current, Low
Voltage discharge in
vacuum ambient
• Current conducted
in metal vapor
plasma produced by
discharge itself from
evaporated
electrode material
Usually plasma production concentrated at cathode spots
3
Ion flow
rapid heating
of microprotrusion
shock wave
traveling to
base
explosion of
microprotrusion
Time Evolution of Cathode Spot Cell
Liquid drops,
energetic
electrons, ions
and atoms
ejected from
cathode
leaving a
micro-crater
Atoms
ionized by
electron
impact or if
density
sufficient,
self
ionization
Expanding hot
dense plasma
cell in nonthermal
equilibrium
layer
Micro-protrusions on cathode surface
Ion flow
to anode
New ion
flow to
cathode
Cathodic arc plasma
Subspots (fragments)
Cells
Initial confinement of plasma
L = 1×10-8 m
V = 1×10-24 m3
Hot e- Te =3x104 K
Cold ions
Number of ions 10 to 100
Densitymax ~ 1026 ions.m3
All particle N body simulation
Coulomb forces between electrons and ions
q (i ) q ( j ) x (i, j )
Fx (i )
3
4
r
(
i
,
j
)
o
j i
2
q (i ) q ( j ) 1 K
1
m
(
i
)
v
(
i
)
K (i )
2
U
i
i
j i 4 o r (i, j )
Up > 0 Ue > 0 Upe < 0
E U K
x(i, t t )
2 x(i, t ) x(i, t t )
q( j ) x(i, t ) x( j, t )
q(i ) t
3
4 o m(i) j i
r (i, j , t )
2
r(i, j, t) small problems
r(i, j, t)
r(i, j, t) +
Problem: Lots of particles – lots of calculations
Can modify equations to include
external electric and magnetic fields
xj(t+1): qj Ex t2
FB = q v x B
Bx =0, By = 0, Bz vz = 0
x(t+1):
G2[2x(t) + (G12-1)x(t-1) + 2G1y(t) – 2G1y(t-1)]
G1 = t Bz /2m G2 = 1 / (1+G12)
Motion of a proton: B = 0.8 T and E = 0 V/m
0.04
0.03
0.02
y (m)
0.01
0
-0.01
-0.02
-0.03
-0.04
-0.04 -0.03
-0.02
-0.01
0
x (m)
0.01
0.02
0.03
0.04
Software MATLAB
slow need to remove loops by using array operations
For each time step t ~ 1x10-18 s Nsteps ~ 107:
xx = meshgrid(x_1,x_1);
yy = meshgrid(y_1,y_1);
zz = meshgrid(z_1,z_1);
xd = xx - xx';
yd = yy - yy';
zd = zz - zz';
Sx = (qq.*xd) ./rd3;
Sy = (qq.*yd) ./rd3;
Sz = (qq.*zd) ./rd3;
SSx = -A2 .* sum(Sx');
SSy = -A2 .* sum(Sy');
SSz = -A2 .* sum(Sz');
rd = sqrt(xd.^2 + yd.^2 + zd.^2);
rd = rd + rdMin;
rd3 = rd.^3;
xfp = 2.*x_1 - x_2 + SSx;
yfp = 2.*y_1 - y_2 + SSy;
zfp = 2.*z_1 - z_2 + SSz;
qq = meshgrid(q,q)
SIMULATIONS
single, multiple and mixed charged states
10 ps
50 Ti+ 50 e-
H C Ti
10 ps
100 Ti+
100 e-
10 ps
100 Ti+
100 e-
0.10 ps
50 Ti+
50 e-
10 ps
50 ions
50 e-
10 ps
100 Ti+
100 e-
10 ps
100 Ti+ 100 e-
10 ps
100 Ti+
100 e-
10 ps
1026 ion.m-3 Kavg ~ 3.8 eV
Kavg(real) ~ 60 eV 1028 ion.m-3
Initial
Volume
(m3)
1.0×10-24
1.0×10-24
1.0×10-24
1.0×10-24
Initial
Ion
density
(ion.m-3)
No. of
e
100×1024
100
100 Ti+
3.8 0.5
30×1024
30
30
Ti+
1.7 0.6
30×1024
60
30
Ti2+
9.6 1.2
60
10
10
10
Ti+
Ti2+
Ti3+
1.8 0.6
8.2 1.2
11.8 1.6
30×1024
No. of Ti
ions
Average ion
KE (eV)
10 ps
R = Ti2+ / Ti+