Document 7836958

Download Report

Transcript Document 7836958

SFB 450 seminary: wave packet dynamics & relaxation
Jan. 21, 2003
Arthur Hotzel, FU Berlin

density matrix representation, relaxation: energy dissipation and pure dephasing

Liouville representation:
d
i
 L    H ,    R  
dt

L = Liouville tensor, R = relaxation tensor (4th order tensors)

Redfield theory I: relaxation due to "random" perturbation
 relaxation rates given by spectral densities of the autocorrelation function of the perturbation
 needs ad-hoc correction for finite temperature

Redfield theory II: relaxation due to coupling to bath which is in thermal equilibrium
 gives correct temperature dependence

relaxation of an harmonic oscillator:
 2  2 m 2
q  q0 2
H 

2
2 q
2

"random" variation of equilibrium position q0 ~ perturbation  q:
energy dissipation by 1-quantum steps
no pure dephasing (diagonal elements of perturbation vanish)

"random" variation of eigenfrequency  ~ perturbation  q2:
energy relaxation by 2-quantum steps
pure dephasing
Coupled harmonic oscillators:
Excited state intramolecular proton transfer (ESIPT)
SFB 450 seminary, Jan. 21, 2003
Arthur Hotzel, FU Berlin
2,5-bis(2-benzoxazolyl)-hydroquinone (BBXHQ)
enol
enol
enol/enol
keto
energy
keto
keto/enol
enol/keto
Q
(scaffold coord.)
q
(proton coordinate)

proton transfer in the first excited state (singlet), enol (A)  keto (B)

high-frequency proton oscillation around equilibrium positions A, B (coordinate q)

proton site-site distance modulated by low-frequency scaffold mode (coordinate Q)
Dynamics without dissipation

second Born-Oppenheimer approximation:
pure enol(A)/keto(B) eigenstates:


 (Q, q, r )   (Q)   (Q, q)  (Q, q, r )
 : scaffold,   : proton,  : electrons
total Hamiltonian:
pure enol/keto Hamiltonian:
enol-keto coupling:

H  H 0  W (Q, q, r )
H 0   E 
 '  ' ' W    dQ * '  ' ' (Q) Wpr'.'el. (Q)  (Q)
with
Wpr'.'el. (Q)   dq  * ' ' (Q, q ) Wel'. (Q, q )   (Q, q)
and



Wel'. (Q, q)   d 3n r *' (Q, q, r ) W (Q, q, r )  (Q, q, r )

consider only first electronically excited enol and keto singlet states

assume electronic coupling independent of nuclear coordinates:
el.
el.
Wel'. (Q, q)  Wketo
 517 meV
,enol (Q, q) : W
Proton wave functions

furthermore, consider only proton vibrational ground states ( = ' = 0):
FCPR(Q)   dq  0*, keto(Q, q)  0,enol (Q, q) protonic Frank  Condon factor
 W '   ',  '0, keto W  ,  0,enol  W el.   dQ * ', keto(Q)  ,enol (Q) FCPR(Q)
enol
protonic Frank-Condon factor FCPR depends strongly
on scaffold coordinate Q:
FCPR(Q) = 0.006
at left-hand classical turning
point of scaffold vibrational
ground state (enol)
FCPR(Q) = 0.081
at right-hand classical turning
point of scaffold vibrational
ground state (enol)
enol
keto
keto
energy

Q
(scaffold coord.)
q
(proton coordinate)
Scaffold vibrational states

Effective scaffold potentials are harmonic potentials with vibrational energy ħW =
14.6 meV, reduced mass M = 47.8 amu
(proton vibrational energy ħ = 335 meV).

Keto and enol scaffold equilibrium positions are shifted by 0.077 Å with respect to
each other.

Eigenenergies of scaffold vibrational states without enol-keto coupling:
enol :
keto :
 2
E  '  W   ' 1  43.4 meV
2
E    W    1
 , '  0, 1, 2, 3, 

enol  keto basis transformation:
FCSC ',  * ', keto  ,enol
exothermic ity 
Enol-keto coupling
W '   ',  ' 0, keto W  ,   0,enol  W el.   dQ * ', keto(Q)  ,enol (Q) FCPR(Q)

approximate FCPR(Q) by parabola:
FCPR(Q)  F 0  F1 Q  F 2  Q 2

express Q in terms of creation/annihilation operators of vibrational scaffold states
(enol basis):
0
0 
0 1


2 0 
1 0
 
Q
0
2 0
3 

2W M 
3 0 
0 0
 

 




 W ',  W el.  FCSC  F 0  F1  Q  F 2  Q 2  ',
FCSC ',  * ', keto  ,enol
Total Hamiltonian in the enol/keto basis
enol states, α  0 ,1, 2 ,
keto states, α ' 0 ,1, 2 ,



H

 W    1

2
 W
 , '






W†',

W   ' 1  43.4 meV 
2


 enol states, α  0,1, 2,
keto states, α'  0,1, 2,

Q[Å]
initial state (energy basis)
pure keto states
H eigenstates
Initial state: Excitation from molecular ground state with delta pulse; scaffold ground state
equilibrium position shifted by 0.077 Å with respect to electronically excited enol state.
pure enol states

initial state (enol basis)
Eigenstates of H (considering enol/keto states  = 0, ..., 9, ' = 0, ..., 9):
energy [amu Å2 ps-2]

Wavefunction dynamics without dissipation

diagonalize H: eigenvalues Hk, eigenvectors  k

express initial state in terms of eigenstates of H

propagate for time t:
  i Hk t 
 k  exp 
 k
  

transfer back into enol/keto basis
blue: projection onto enol basis
red: projection onto keto basis
energy
(reduced enol/keto Hamiltonian)
[amu Å2 ps-2]
elapsed time [oscillation periods = 0.283 ps]
Q[Å]
Dissipation

We consider random perturbation of the form (in enol/keto basis):
enol states, α  0 ,1, 2 , enol states, α  0 ,1, 2 ,



 


0

1
0

0

~
G 









1
0
2
0

0
2
0
3

0
0
0
3
0






0
0
1
0
0

1
0
2
0

0
2
0
3









0 
0 

3 
0 

 



 enol states, α  0 ,1, 2 ,






 keto states, α '  0,1, 2,



Random perturbation proportional to scaffold elongation from equilibrium
(Q - Q0) in the enol and keto states.
Relaxation tensor
~
G G

Make basis transformation to eigensystem of H:

We assume short correlation time tc of random correlation:
1
tc

Hi  H j

i, j
 spectral density of autocorrel ation function of random perturbati on  const.
 relaxation tensor (in eigenvecto r basis of H ) :
Glj Gik
Glj Gik
f 
Rijkl 


 2 1  exp H i  H k  kT  1  exp H j  H l

 kT  

Glr Grj
Gir Grk
  ik 













1

exp
H

H
kT
1

exp
H

H
kT
r
k
r
l

r
r
  jl 

We take f = 200 ps
Wavepacket dynamics with dissipation

 = density matrix in eigenvector basis of H
dij
dt
  Lijkl   kl 
kl


 i Hi  H j
ij   Rijkl   kl

kl
L = Liouville tensor

treat  as 2n 2 -dimensional vector (n = 10 = number of included scaffold vibrational
states in the enol- and keto electronic states)

treat L as 2n 2  2n 2 -matrix

diagonalize L: eigenvalues Lk, eigenvectors sk

express initial state (t = 0) in terms of eigenstates of L

propagate for time t:
s k  exp Lk t  s k

transfer back into eigenvector basis of H and then into enol/keto basis
blue: projection onto enol basis
red: projection onto keto basis
energy
(reduced enol/keto Hamiltonian)
[amu Å2 ps-2]
elapsed time [oscillation periods = 0.283 ps]
Q[Å]