Simultaneous Equations • Can use matrix maths to solve linear simultaneous equations
Download ReportTranscript Simultaneous Equations • Can use matrix maths to solve linear simultaneous equations
Simultaneous Equations • Can use matrix maths to solve linear simultaneous equations • Arise from: – Electric Circuits • Kirchoff’s laws – Fluid Dynamics Systems of equations #1 Kirchoff’s Laws ε0 R0 ε1 R2 R1 Kirchoff’s Laws • Kirchoff’s Node Law – The sum of currents at a node is equal to zero – Current does not build up at a node • Kirchoff’s Loop Law – The sum of potentials around a loop is equal to zero Kirchoff’s Laws Apply to circuit #1 I0 ε0 ε1 I1 I2 R0 Loop1 R2 Loop2 R1 Kirchoff’s Laws Apply to circuit #2 • Node Law – I0-I2-I1 = 0 • Loop1 – I0R0-e0+I2R2=0 • Loop2 – -I2R2-e1+I1R1=0 Kirchoff’s Laws Apply to circuit #3 • Get rid of I2 & rewrite I0 I2 I1 0 solve I2 I0 I1 • Loop 1 I0 R0 R2 I0 R2 I1 E0 • Loop 2 R2 I0 R2 I1 I1 R1 E1 Kirchoff’s Laws & Simultaneous Equations • Ohms law Re sis tan ce Current Voltage • Also works with Coeffs unknowns Re sults arrays of resistances & vectors of voltages Re sis tan ces Currents Voltages & currents Kirchoff’s Law I0 R0 R2 I0 R0 R2 I0 R2 I1 R2 R2 R2 R1 R2 R2 I1 E0• Loop1 & • Loop2 from before I1 R1 E1 • Write in matrix form I0 E0 I1 E1 Kirchoff’s Laws Solution step E0 7 V R0 4 ohm R0 R2 3 V E1 R2 R1 R2 R1 • Give values to resistance & voltages R2 5 ohm 1 E0 E1 8 ohm R2 1.25 1 • Form solution step A Systems of equations #2 • Solution Step Coeffs unknowns Re sults Coeffs1 Coeffs unknowns Coeffs1 Re sults unknowns Coeffs1 Re sults Systems of equations #3 3x0 1x1 5 x2 20 2 x0 3x1 1x2 5 1x0 4 x1 7 Coeffs unknowns Re sults 3 1 5 2 3 x0 20 1 x1 5 1 4 0 x2 7 Systems of equations #4 3 1 5 1 20 1 1 5 2 1 4 0 7 3 2 3 unknowns Coeffs1 Re sults 3 1 5 Coeff 2 3 1 1 4 0 20 Res From matrix toolbar 5 7 1 1 Unknown Coeff Res Unknown 2 3