Computational Solid State Physics 計算物性学特論 第2回 2.Interaction between atoms and the

Download Report

Transcript Computational Solid State Physics 計算物性学特論 第2回 2.Interaction between atoms and the

Computational Solid
State Physics
計算物性学特論 第2回
2.Interaction between atoms and the
lattice properties of crystals
Atomic interaction
 Lennard-Jones potential:
for inert gas atoms: He, Ne, Ar, Kr, Xe
 Stillinger- Weber potential:
for covalent bonding atoms: C, Si, Ge
Lennard-Jones potential (1)
  12   6 
VLJ (r )  4      
 r  
 r 
r: inter-atomic distance
VLJ/ε
repulsive
force
attractive
force
VLJ(r) minimum at
1
6
r  r0  2   1.12
VLJ (r0 )  
r/σ
Lennard-Jones potential (2)
  12   6 
VLJ (r )  4      
 r  
 r 
1st term: repulsive interaction caused by Pauli’s principle
2nd term: Van der Waals interaction (attractive)
r
p1
temporal
dipole
moment
p2 (r)
induced
dipole
moment
p1
p2 (r )  E1 (r )   3
r
p1 p2
1
VVW (r )  3   6
r
r
E1: electric field generated by a
temporal dipole moment p1
1-dimensional crystal
a
x
Energy per atom:
12
6

1
 
  
E   2  4       
2
 an  
n 
 an 
12
6



 
  
 4 1.00   1.02  
a
 a  

a: lattice constant
E minimum at a=1.12σ
E (a)  1.04
cohesive energy
εc=1.04ε
Bulk modulus
2
d
B  L 2 EN
dL
L  Na
B : Bulk modulus
N : the number of atoms in a crystal
a : lattice constant
d


B  a 2 E  74.9  66.9
da
a

2
Lattice vibration
displacement xn
Na: length of a crystal
x
a
assume: neglect the 2nd
neighbor interaction
1 d2
2
VLJ (a  x)  VLJ (a) 
V
x
LJ x  a
2 dx 2
d2


  2 VLJ x a  72 2  57.4 2
dx
a

a  1.12
•The first derivative of the inter-atomic potential vanishes because
atoms are located at the equilibrium positions.
•The second derivative of the inter-atomic potential gives the
spring constant κ between atoms.
Equation of motion for atoms
xn-1
xn
xn+1
m: mass of an atom
a
Force on the n-th atom:
VLJ (a  xn 1  xn ) VLJ (a  xn  xn 1 )
Fn  

xn
xn
  ( xn 1  xn )   ( xn  xn 1 )
Equation of motion for atoms:
d 2 xn
m 2   ( xn 1  xn )   ( xn  xn1 )
dt
1 n  N
Solution for equation
of motion
d 2 xn
2
2
 0 ( xn 1  xn )  0 ( xn  xn1 )
2
dt

0 
m
2
2
xn ( k )  xn ( k 
)
a
Assume: xn  exp[ i(kan  t )]
2
2
2 ka
k: wave vector
  40 sin
2
Periodic boundary condition: xn  xn  N
kaN  2l
2 l
k
a N


k

a
a
N
N
 l 
2
2
1st Brillouin zone
N modes
Dispersion relation of
lattice vibration
ka
 (k )  20 sin
2
acoustic mode
sound velocity:
phase velocity at k=0
ω(k)/ω0
w(k )

v
 0 a  a
k k 0
m
ka
v becomes larger for larger κ
and smaller m.
Phonon
Energy quantization of lattice vibration
1
El (k )   (k )(l  )
l=0,1,2,3
2
 ( k )
E0 ( k ) 
2
:zero point oscillation
Bose distribution function for phonon number:
1
n( (k )) 
exp(  (k ) / k BT )  1
k BT
for k BT  
n( (k )) 
 (k )
Role of the acoustic phonon in
semiconductors at a room temperature
 Main electron scattering mechanism
in crystals
 Determine the lattice heat capacity
 Determine the thermal conductivity
Lattice heat capacity:
Debye model (1)
3
V 3
 L  4 3  L  4
Nk  
k 
 2 3


3
6 v
 2  3
 2  3v
dN k
V 2 Density of states of acoustic
D( ) 
 2 3
d 2 v phonos for 1 polarization
3
3
 (k )  vk
k
2
k 
L
Nk: Allowed number of k
points in a sphere with a
radius k
phonon dispersion relation
Debye temperature θ
3
 D  k B
V
N
D
2 3
6 v
N: number of unit cell
v  6 2 N 

  
kB  V 
1
3
Thermal energy U and lattice heat
capacity CV : Debye model (2)
3 polarizations for acoustic modes
D
V 2

U  3 dD( )n( )  3  d 2 3
2 v exp(  / k BT )  1
0
2

U
3
V



CV  
 
2 3
2
 T  V 2 v k BT
T 
CV  9 Nk B  
 
3 xD
D
 4 exp(  / k BT )
0 d [exp(  / k BT )  1]2
x 4e x
0 dx (e x  1) 2
Debye model (3)
T 
CV  9 Nk B  
 
3 xD
4 x
xe
0 dx (e x  1) 2
・Low temperature T<<θ
3
4
12
T 
CV 
Nk B  
5
 
・High temperature T>>θ
CV  3NkB
Equipartition law:
energy per 1 freedom
is kBT/2
Heat capacity CV of the Debye
approximation: Debye model (4)
kB=1.38x10-23JK-1
kBmol=7.70JK-1
3kBmol=23.1JK-1
Heat capacity of Si, Ge and solid Ar:
Debye model (5)
Si and Ge
cal/mol K=4.185J/mol K
3kB mol=5.52cal
K-1
Solid Ar
CV  T
3
Thermal conductivity (1)
Diffusive energy flux
dT
dT
2
jE    nvx c
vx  nc  vx  
dx
dx
nc  v 2   dT
jE  
3
dx
Energy
T: temperature
3kBT(x)
vxτ
c: heat capacity per particle
Energy emission
c vxτdT/dx
n: average number of phonons
v: group velocity of phonon
τ: scattering time
x
Thermal conductivity (2)
dT
jE   K
dx
Thermal conductivity coefficient
nc  v 2   Cv 2 Cvl
K


3
3
3
C: heat capacity per unit volume,
l=vτ: phonon mean free path
v: sound velocity of acoustic phonon
K is largest for diamond because
of the high sound velocity!
Molecular dynamics simulation
for atoms
Equation of motion for atoms:
dr
v
dt
dv
F
a
dt
m
r: position of an atom
v: velocity
a: acceleration
F: force
t: time
m: mass of an atom
(1) velocity Verlet’s method
Time evolution for small time interval t :
1 2
3
r (t  t )  r (t )  tv(t )  t a(t )  O(t )
2
1
v(t  t )  v(t )  t[a(t )  a(t  t )]  O(t 3 )
2
Proof of (1)
2
dv
1d v 2
3
v(t  t )  v(t )  t 
t  O(t )
2
dt
2 dt
1 d 2 v 2 1 da 2 1 a (t  t )  a (t ) 2
3
t 
t 
t  O(t )
2
2 dt
2 dt
2
t
1
 v(t  t )  v(t )  [a (t )  a(t  t )]t  O(t 3 )
2
(2) Verlet method
Time evolution for small time interval
t
t  nt
xi (n  1)  2 xi (n)  xi (n  1)  ai , x (n)( t ) 2  O(( t ) 4 )

3
dxi
d
xi
1 d 2 xi
1
2
3
4
xi (n  1)  xi (n) 
(t ) 
(

t
)

(

t
)

O
((

t
)
)
2
3
dt
2 dt
6 dt
d 2 xi
xi (n  1)  xi (n  1)  2 xi (n)  2 (t ) 2  O(( t ) 4 )
dt
xi (n  1)  xi (n  1)
vi , x (n) 
 O(( t ) 2 )
2t
Temperature
Equipartition theorem
m 2
k BT
 vi , x 
2
2
Temperature is determined from the average
kinetic energy.
Periodic boundary condition
2-dimensional system
Trajectories of 20 atoms interacting
via Lennard-Jones potential
Setting of energy
and temperature
melting
triangular crystal
Time-lapse snapshots of interacting
particles (1)
formation of triangular crystal
Time-lapse snapshots with increasing
Temperatures (2)
melting
Problems 2-1
 Calculate two branches of the dispersion
relation of the lattice vibration for a diatomic
linear lattice using a simple spring model, and
describe the characteristics of each branch.
 Calculate the dispersion relation for a graphen
sheet using a simple spring model between
nearest neighbor atoms.
 Study the role of the optical phonon in
semiconductor physics.
Problems 2-2
 Find the most stable 2-dimensional crystal
structure, using the Lennard Jones potential.
 Find the most stable 3-dimensional crystal
structure, using the Lennard Jones potential.
 Write a computer simulation program to study
the motion of 3 atoms interacting with
Lennard-Jones potential. Assume the space
of motion to be within a 2-dimensional
square region.
Problems 2-3
 Study experimental methods to observe the
dispersion relation of phonons.
 Study the phonon dispersion relations for Si
and Ge crystals and discuss about the
similarity and the difference between them.
 Study the phonon dispersion relations for Ge
and GaAs crystals and discuss about the
similarity and the difference between them.