Transcript

Satellite geodesy. Basic concepts. I1.1a
Z
b
a

r
Meridian plane
h
φ
X-Y
 = geocentric latitude
φ = geodetic latitude
r = radial distance, h = ellipsoidal height
a = semi-major axis, b = semi-minor axis
z = axis of rotation, 1900. flattening = (a-b)/a.
C.C.Tscherning, University of Copenhagen, 2007-10-25
1
Coordinate-systems
Example:
Frederiksværk
φ=560, λ=120, h= 50 m
C.C.Tscherning, 2007-10-25.
Geoid and mean sea level
H
N
Earth surface
Geoid: gravity potential constant
Ellipsoid
h=H+N=Orthometric height + geoid height
along plumb-line
=HN+ζ=Normal height + height anomaly,
along plumb-line of gravity normal field
C.C.Tscherning, 2007-10-25.
Gravity potential, Kaula Chap. 1.
• Attraction (force):
mM
F k 2
r
• Direction from gravity center of m to M.
• With m = 1 (unitless), then acceleration
kM 
a 2  2
r
r
C.C.Tscherning, 2007-10-25.
Gradient of scalar potential, V,
 V 
 x 
 V 

kM
 
a  V   , V ( x, y, z ) 
point - mass
r
 y 
 V 
 z 
C.C.Tscherning, 2007-10-25.
Volume distribution, ρ(x,y,z)
V ( x' , y ' , z ' ) 
 ( x, y , z )
 k
( x  x' ) 2  ( y  y ' ) 2  ( z  z ' ) 2
Earth
dx dy dz 

k  d
r
Earth
• V fulfills Laplace equation
2
2
2
V  2 V  2 V  2 V  0, outside masses
x
y
z
C.C.Tscherning, 2007-10-25.
Spherical coordinates
• Geocentric latitude 
• Longitude, λ, r = distance to origin.
x  r cos  cos 
y  r cos  sin 
z  r sin 
Volume - measure : d  dxdydz  cos  r 2 d ddr
C.C.Tscherning, 2007-10-25.
Laplace in spherical coordinates
V
1 
  2 V 

)

(cos

r
 r r  cos  



2
1 V
cos  2 2
Solution : V  R(r ) ( ) ( ),
1
V  2
r
or r ,  ( )  cos m or sin m
R(r )  r
 ( )  Pnm (sin  ), n  degree, m  order.
 n 1
n
C.C.Tscherning, 2007-10-25.
Spherical harmonics
• Define:
 cos m , m  0
an
Vnm (r ,  ,  )  n 1 Pn|m| (sin  )
r
sin | m |  , m  0
then

V (r ,  ,  )  kM 
n 0
n
C
m n
V (r ,  ,  )
nm nm
C.C.Tscherning, 2007-10-25.
Orthogonal basis functions
• Generalizes Fourier-series from the plane
90 180
 V
nm
 90
(r ,  ,  )Vij (r ,  ,  ) cos  d d 
0
 kMCnm for n  i, m  j

for n  i or m  j
0
Functions may be (fully)nor malized, then
C nm  Cnm and Pnm  Pnm
C.C.Tscherning, 2007-10-25.
Centrifugal potential
• On the surface of the Earth we also measure the
centrifugál acceleration,
1 2 2
2
W  V   r cos  
r
2

1 2 2
2
V   (x  y )
2
  rotational velocity (in inertial space).
C.C.Tscherning, 2007-10-25.
Normal potential, U
•
•
•
•
Good approximation to potential of ideal Earth
Reference ellipsoid is equipotential surface, U=U0, ideal geoid.
It has correct total mass, M.
It has correct centrifugal potential
2
a 2
a 4

  2
U  1  J 2 ( ) P20 (sin  )  J 4 ( ) P40 (sin  )  .... 
r cos 2 
r
r

 2
2
3
2
J 2  f (1  f / 2)  m / 3(1  m  f )  ......
3
2
7
m   2 a / g e , (gravity at Equator)
• Knowledge of the series development of the gravity potential
can be used to derive the flattening of the Earth !
C.C.Tscherning, 2007-10-25.
Satellite Geodesy: distances or ranges
• If we know the orbit of the satellite and
measure distances (or distance differences) to
the satellite, then we may determine our own
position: GPS, Doppler.
S2
S1
Us
C.C.Tscherning, 2007-10-25.
S3
Satellite Geodesy: ranging to the Earth
• Known orbit. One or two way ranging.
Envisat
• Satellite altimetry
Ocean or ice
ERS1
• PRARE
• Synthetic Aperture Radar
C.C.Tscherning, 2007-10-25.
Satellite Geodesy: from ground to satelite
• Laser ranging
• Optical directions
• Enables orbit determination
• Enables gravity potential estimation
C.C.Tscherning, 2007-10-25.
LAGEOS
Satellite to satellite tracking
• We measure the position of a satellite from
other satellites: SST
• Enables calculation of position and velocity
• Enables calculation of Kinetic Energy
S2
S1
S4
C.C.Tscherning, 2007-10-25.
S3
Satellite to satellite tracking, Low-Low
• We measure range rates between two satellites
• Gives (approximately) difference in Kinetic
energy
S1
GRACE
S2
S4
Range-rate
C.C.Tscherning, 2007-10-25.
S3
S4
SST and gradiometry
• Measurement of acceleration differences inside
satellite (GOCE).
• Determines second-order derivatives of
potential.
Mass1
Mass2
C.C.Tscherning, 2007-10-25.
Task of Geodesy: to determine
• Points on the surface of the Earth (and Planets) and
changes (geodynamics, climate changes, sea-level)
• Geoid/quasi-geoid determines state of sea-level if no
currents – tides – salinity or temperature variations
• Determines tides, (geostrophic) currents etc. If geoid
known
• Position of the Earth in Inertial system, Earth
rotation, pole-position, Earth elastic parameters.
• Changes of gravity (due to crustal uplift or
hydrosphere changes)
C.C.Tscherning, 2007-10-25.