Do small systems equilibrate chemically? Ingrid Kraus TU Darmstadt

Download Report

Transcript Do small systems equilibrate chemically? Ingrid Kraus TU Darmstadt

Do small systems equilibrate chemically?
Ingrid Kraus
TU Darmstadt
Outline
• Introduction to the Statistical Model
– Ensembles, partition function
• Grand canonical ensemble
– Comparison to data
– Extrapolation and predictions for heavy-ion collisions at LHC
– Experimental observables for T and μB determination
– Relevance of resonances
• From Pb+Pb to p+p: system size and energy dependence
– Canonical suppression
– Concept of equilibrated clusters
– Comparison to data
• Summary
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
2
Statistical Ensembles
• Micro-canonical
– closed system
E, V, N
– E, V, N fix
• Canonical
– heat bath
– T, V, N fix
T, Vb, Nb
T, V, N
Laplace
transformation
SE
Z grand can   N (e
m /T N
) Zcan
SN
T, Vb, Nb
• Grand-canonical
– open system
– heat bath and particle reservoir
T, V, m
– T, V, m fix
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
3
Partition function and its derivations
• Partition function of a grand canonical ensemble ln Z (T ,V , m )
• Energy density

Entropy density
T  (T ln Z ) 
 mn
V
T
s
• Particle number density
n
1  (T ln Z )
V
m
Pressure
P
• Grand-canonical partition function
1  (T ln Z )
V
T
 (T ln Z )
V


ln Z (T ,V , m )  i ln Zi (T ,V , m )
– i: species in the system
– Mesons m < 1.5 GeV, Baryons m < 2 GeV
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
4
Partition function and model parameters
• Partition function for species i with degenaracy factor gi

V  gi
ln Zi (T ,V , m ) 

2 
2 0

• with
 
N
i m  Ei

p 2 dp ln1  e T e T

 
N i m  N Bi m B  N Si m S  N Qi mQ



Ei 
pi2  mi2
– (+) for fermions, (-) for bosons
• Model parameters
– T and mB
mS constrained by strangeness neutrality
– V cancels in ratios
mQ constrained by charge of nuclei
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
5
Comparison to Experimental Data
A.Andonic, P. Braun-Munzinger, J. Stachel, nucl-th/0511071
– Accurancy in T, mB: few MeV
– Different data selected for fits
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
6
T - mB – systematics, extrapolation to LHC
Chemical decoupling conditions
extracted from SIS up to RHIC
hep-ph/0511094
Feature common behavior
On the freeze-out curve:
TLHC ≈ TRHIC ≈ 170 MeV
T ≤ TC ≈ 170 MeV
μB from parametrised freeze-out
curve:
μB (√(sNN) = 5.5TeV) = 1 MeV
Nucl. Phys. A 697 (2002) 902
Grand canonical ensemble
for Pb+Pb predictions
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
7
Predictions for Pb+Pb
• Reliable for stable
particles
• Benchmark for
resonances
• Errors:
T = 170 +/- 5 MeV
μB = 1 +- 41 MeV
All calculations with THERMUS hep-ph/0407174
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
8
Extraction of thermal parameters from data
_
• determine μB from p/p
• sensitivity on T
– increases with mass
difference
– decay contribution affect
lighter particles stronger
– increasing feed-down with
increasing T
– decay dilutes T dependence
• T from W /  and/or W / K
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
9
Resonance Decays
•
Hadron Resonance gas
Ni  Ni
thermal
  j  j i N j
thermal
•
W no resonance contribution
•
X
–
50% from feed-down
– both exhibit same T dependence
•
K decay exceeds thermal at LHC
•

– thermal production ≈ constant
– resonance contribution dominant
•
75% of all  from resonances
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
10
Canonical suppression
• Grand canonical ensemble
T, Vb, Nb
– large systems, large number of produced hadrons
T, V, m
• Canonical ensemble
– small systems / peripheral collisions, low energies
– suppressed phase-space for particles related to conserved charges
– density of particle i with strangeness S approxiamtely
nicanonical  nigrand canonical 
I S ( x)
I 0 ( x)
T, Vb, Nb
T, V, N
• S: order of Bessel functions
• x: sum over strange hadrons, related to volume
– Volume enters as additional parameter V
– here: radius R of spherical volume V
Ingrid Kraus, TU Darmstadt
nicanonical  ni (V )  ni ( R)
Hot Quarks 2006, Sardinia, May 16, 2006
11
Canonical suppression
– Stronger suppression for
multi-strange hadrons
– Suppression depends on
strangeness content, not
difference
(expected from gS)
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
12
Suppression by undersatured phase-space
– Stronger suppression for
multi-strange hadrons
– Suppression depends on
difference of strangeness
content
(power of gS)
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
13
Suppression in small systems
SPS √(sNN) = 17 AGeV
• Suppressed strangeness
production beyond canonical
suppression
– addressed by canonical treatment
and undersaturation factor gS
– new: equilibrated clusters
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
14
Modification of the model
• Statistical Model approach: T and μB
– Volume for yields → radius R used here
• Deviations: strangeness undersaturation factor gS
– Fit parameter
• Alternative: small clusters (RC) in fireball (R): RC ≤ R
– Chemical equilibrium in subvolumes: canonical suppression
– RC free parameter
R
RC
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
15
Fit Example
• All Fits were performed with
THERMUS
hep-ph/0407174
• Fits with gS / RC give better
description of data
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
16
System size and energy dependence of T and mB
•
T independent of
– System size
– Data selection
– Energy
Ingrid Kraus, TU Darmstadt
• μB smaller at RHIC
Hot Quarks 2006, Sardinia, May 16, 2006
17
System size and energy dependence of the cluster size
• Small clusters in all systems
• Small system size dependence
• p+p
– energy dependence?
• Pb+Pb
– depends on data selection
(multistrange hadrons needed)
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
18
System size and energy dependence of the cluster size
• A+A: clusters smaller than fireball
• RC not well defined for RC ≥ 2 fm because suppression vanishes
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
19
Canonical Suppression
• Particle ratios saturate
at RC ≈ 2 - 3 fm
– no precise determination
for small strangeness
suppression
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
20
Summary
• Grand canonical ensemble
– successful description of Au+Au,
Pb+Pb data
• Canonical ensemble
– volume dependend suppression
– extrapolations allow for predictions
– stronger suppression modeled with
smaller, thermally equilibrated clusters
– determination of thermal
parameters with few particle ratios
– successful description of p+p, C+C,
Si+Si data
– proper treatment of resonances is
mandatory
– strangeness production in small
systems reproduced with equilibrated
subvolumes
• Outlook
– strangeness production in p+p at LHC
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
21
Going into formulas

V  gi
ln Zi (T ,V , m ) 

2 
2 0

 
N
i m  Ei

p 2 dp ln1  e T e T




• performing the momentum integration
 V
ln Zi (T ,V , m ) 
  k
N
m
 T  gimi2  (1) k 1  Ti 
e
2
2


2
k 1 k



 km 
K2  i 
 T 
– (+) for bosons, (-) for fermions
– mi: mass of hadron i
• Particle number density
1  (T ln Zi ) T

ni (T , m ) 

V
m
Ingrid Kraus, TU Darmstadt
  k
N
m
 gi  mi2  (1) k 1  Ti 
e
2


k
2
k 1



Hot Quarks 2006, Sardinia, May 16, 2006
 km 
K2  i 
 T 
22
Density and Ratios

• Approx. modified Bessel function
2
2
2
 
Ni m
e T
  
3 / 2 ( N1  N 2 ) m
m1 
 e T
n1 g1 
  
n2 g 2  m2 
• Particle ratio
• Antiparticle/Particle ratio
Ingrid Kraus, TU Darmstadt
ni 
 gi  (T  mi )3 / 2
 
2N1m
n1
e T
n1
Hot Quarks 2006, Sardinia, May 16, 2006
e
e


mi
T
m1  m2
T
2 N B, 1 m B 2 N S , 1 mS
e
T
23
System size dependence of T and mB
•
μB decreases at mid-rapidity in small systems ….
• …. as expected from increasing antibaryon / baryon ratio
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
24
System size dependence of the cluster size
Same trend as K / 
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
25
More SPS and RHIC 200 GeV Data
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
26
Model setting with gS
•
gS
– sensitive on data sample
– increase with size
– increase with energy
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
27
Extrapolation to LHC
• does strangeness in
p+p at LHC behave
grand canonical ?
• multiplicity increases
with √(sNN)
– canonical and grand
canon. event classes?
plot from PPR Vol I
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
28
Prediction for p+p
• significant increase of
ratios at RC ≈ 1.5 fm
• K /  and W / X
behave differently
– multistrange hadrons
suffer stronger
suppression
• RC will be determined
with ALICE data
Ingrid Kraus, TU Darmstadt
Hot Quarks 2006, Sardinia, May 16, 2006
29