Chapter 10 Columns

Download Report

Transcript Chapter 10 Columns

Chapter 10 Columns

10.1 Introduction Column = vertical prismatic members subjected to compressive forces Goals of this chapter: 1. Study the stability of elastic columns 2. Determine the critical load P cr 3. The effective length 4. Secant formula

Previous chapters: -- concerning about (1) the strength and (2) excessive deformation (e.g. yielding) This chapter: -- concerning about (1) stability of the structure (e.g. bucking)

10.2 Stability of Structures Concerns before:

 

P A

 

allow

 

PL AE

 

cr

New concern:

P cr

(

L

2

)sin sin

K

(

2  

) Stable?

Unstable?

(10.1) (10.2)

Since sin

P cr

(

L

2

)

P cr

4 

K

(

2 

)

(10.2) The system is stable, if

P cr

 4

The system is unstable if

P cr

 4

A new equilibrium state may be established

P

(

L

2

)sin

M

K

(

2

)

The new equilibrium position is:

PL

 4

K

sin

(10.3) or

sin

PL

4

K

After the load P is applied, there are three possibilities: 1. P < P cr – equilibrium &

= 0 - stable 2. P > P cr – equilibrium &

=

- stable 3. P > P cr – unstable collapses,

– the structure = 90 o

10.3 Euler’s Formula for Pin-Ended Columns Determination of P cr for the configuration in Fig. 10.1 ceases to be stable Assume it is a beam subjected to bending moment:

2

d y

dx

2

M EI

 

P EI y

(10.4)

dx

2 

P EI y

 0

(10.5)

Defining:

p

2 

P EI

2

d y

dx

2 2

p y

 0

(10.6) (10.7) The general solution to this harmonic function is:

y

A

sin

px

B

cos

px

(10.8) B.C.s:

@

x = 0, y = 0

B = 0

@

x = L, y = 0 Eq. (10.8) reduces to

A

sin

pL

 0

(10.9)

A

sin

pL

 0

(10.9) Therefore, Since We have For n = 1 1. A = 0

y = 0

the column is straight!

2. sin pL = 0

pL = n

 

p = n

 /L 

p

2 

n

2

2

L

2

p

2 

P EI P

n

2  2

EI L

2

P cr

  2

EI L

2

(10.6) (10.10) -- Euler’s formula (10.11)

Substituting Eq. (10.11) into Eq. (10.6),

P cr

2

EI L

2

(10.11)

p

2 

P EI

(10.6) Therefore, Hence

p p

2

P cr

EI L

2

EI

2

L EI

Equation (10.8) becomes

2

L

2

y

A

sin

L x

This is the elastic curve after the beam is buckled.

(10.12)

A

sin

pL

 0

(10.9) 1. A = 0

y = 0

2. sin pL = 0

the column is straight!

pL = n

 

P cr

2

EI L

2

If P < P cr

sin pL

0 Hence, A = 0 and y = 0

straight configuration

Critical Stress:

cr

P cr A

2

EI

2

L A

Introducing

I

Ar

2

Where r = radius of gyration

r x

cr I A x

,

2

E

(

L r

)

2

r y

I y A

,

r z

I z A

Where r = radius of gyration L/r = Slenderness ratio (10.13)

10.4 Extension of Euler’s Formula to columns with Other End Conditions Case A: One Fixed End, One Free End

P cr

  2

EI L

2

e

cr

2

E

(

L e r

)

2

L e = 2L (10.11

' ) (10.13')

Case B: Both Ends Fixed At Point C R Cx = 0 Q = 0

  

VQ It

 0

Point D = inflection point

M = 0

AD and DC are symmetric Hence, L e = L/2

Case C: One Fixed End, One Pinned End M = -Py - Vx

2

d y dx

2 

M EI

 

P EI y

V EI x

Since Therefore,

p

2 

P EI

2

d y

dx

2 2

p y

 

V EI x

The general solution:

y

A

sin

px

B

cos

px

The particular solution:

y

 

V x

Substituting

p

2 

P EI

into the particular solution, it follows

y

 

V P x

As a consequence, the complete solution is

y

A

sin

px

B

cos

px

V P x

(10.16)

y

A

sin

px

B

cos

px

V P x

B.C.s: (10.16)

@

x = 0, y = 0

B = 0

@

x = L, y = 0

A

sin

pL

V P L

Eq. (10.16) now takes the new form (10.17)

y

A

sin

px

V P x

Taking derivative of the question,

dy dx

Ap

cos

px

V P

B.C.s:

@ x = L, dy/dx =  = 0

( .

( .

) )

Ap

cos

pL

V P A

sin

pL

V P L

tan pL

pL

(10.18) (10.17) (10.19)

Solving Eq. (10.19) by trial and error,

pL

 

p

/

L

p

2 

Since

p

2 

P EI

P

 2

p EI

Therefore,

P cr

L

2

EI

  2

EI L

2

e

Solving for L e L e = 0.699L

0.7 L

L

2

EI

Case C /

L

2

Summary

10.5

* Eccentric Loading; the Scant Formula

Secant Formula:

P A

 1 

max

ec r

2

sec(

1 2

P L e

)

EA r

If L e /r << 1, sec(

1 2

P L e

)

EA r

 1

Eq. (10.36) reduces to

P A

1 

max

ec r

2

(10.36) (10.37)

10.6 Design of Columns under a Centric Load

10.6 Design of Columns under a Centric Load Assumptions in the preceding sections: -- A column is straight -- Load is applied at the center of the column --

<

y Reality: may violate these assumptions -- use empirical equations and rely lab data

Test Data:

Facts: 1. Long Columns: obey Euler’s Equation 2. Short Columns: dominated by

y 3. Intermediate Columns: mixed behavior

Empirical Formulas:

Real Case Design using Empirical Equations: 1. Allowable Stress Design Two Approaches: 2. Load & Resistance Factor Design

Structural Steel – Allowable Stress Design Approach I -- w/o Considering F.S.

1. For L/r

C c [long columns]

:

cr

2

E

2

[Euler’s eq.] 2. For L/r

C c [short & interm. columns]

:

where

cr

Y

[

1  2

C c

2 2

]

C c

2  2  

Y

2

E

Approach II -- Considering F.S.

1. L/r

C c :

all

cr

2

E

1 92

L r

2

2. L/r

C c :

all

 

cr

 

Y

[

1  1 2

(

C c

2

) ] (10.43) (10.45)

10.7 Design of Columns under an Eccentric Load

centric

 

bending

(10.56) 1. The section is far from the ends 2.

<

y

max

P A

Mc I

(10.57) Two Approaches: (I) Allowable Stress Method (II) Interaction Method

I. Allowable-Stress Method

P A

Mc I

 

all

(10.58) --

all is obtained from Section 10.6.

-- The results may be too conservative.

II. Interaction Method Case A: If P is applied in a plane of symmetry:

all

 

all

 1

(10.59) (

 

(

  1

(Interaction Formula) (10.60)

 

all

centric

-- determined using the largest L e

Case B: If P is NOT Applied in a Plane of Symmetry:

(

)

all centric

M z x

max

(

/ )

all bending I x

M x x

max

(

/ )

all bending I x

 1

(10.61)