ME321 Kinematics and Dynamics of Machines Steve Lambert
Download
Report
Transcript ME321 Kinematics and Dynamics of Machines Steve Lambert
ME321
Kinematics and Dynamics of
Machines
Steve Lambert
Mechanical Engineering,
U of Waterloo
5/24/2016
Kinematics and Dynamics
Position Analysis
Velocity Analysis
Acceleration Analysis
Force Analysis
F ma
We will concentrate on four-bar linkages
5/24/2016
Acceleration Analysis
5/24/2016
Use vector loop equations
Vector equations can be expressed in general form, or
specialized for planar problems
Graphical Solutions
Vector Component Solutions
Complex Number Solutions (in text)
Vector Equations
RP R0 R
Y
P
y
R
RP
R0
R0 X 0 Iˆ Y0 Jˆ Z 0 Kˆ
R xiˆ yˆj zkˆ
x
z
X
xiˆ y ˆj z kˆ X Iˆ Y Jˆ Z Kˆ
Z
5/24/2016
Vector Equations for Velocity
Differentiate Position Vector with respect to Time
VP RP R0 R
R0 XIˆ YJˆ ZKˆ V0
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
R xi y j zk xi yj zk
R V R
VP V0 V R
5/24/2016
Vector Equation for Acceleration
Differentiate velocity equation:
VP V0 V R
To obtain acceleration relation:
a VP V0 V V R V R
a V0 V 2 V R R
5/24/2016
Acceleration Equations
a V0 V 2 V R R
V0
V
2 V
R
R
Where:
5/24/2016
- Acceleration of origin
- Acceleration in local frame
- Coriolis acceleration
- Angular acceleration
- Centripetal acceleration
Planar Velocity Equations
Assume:
ê
êr
Y
B
• Motion is restricted
to the XY plane
• Local frame is
aligned with and
fixed to link
A
r
X
Therefore:
• becomes the angular velocity of the link, and
• local velocity becomes the change in length of the link
5/24/2016
Planar Velocity Equations
VP V0 V R
ê
êr
Y
B
Becomes:
VB VA reˆr reˆ
A
r
X
5/24/2016
Planar Acceleration Equations
aB
aB
aB
aB
5/24/2016
a A aB / A
a A reˆr 2kˆ reˆr kˆ reˆr kˆ kˆ reˆr
a A reˆr 2reˆ reˆ 2 reˆr
a A r 2 r eˆr 2r r eˆ
Application to Four-Bar Linkages
aB a A aB / A
aB a A r 2 r eˆr 2r r eˆ
B
2
aB a A 3 eˆr3 3r3eˆ3
3
A
4
2, 2
O2
O4
42 r4eˆr4 4 r4eˆ 4 22r2eˆr2 2 r2eˆ 2 32eˆr3 3r3eˆ3
5/24/2016
Graphical Solution
3r3
-32r3
2r2
4r4
B
-42r4
3
A
4
2, 2
-22r2
O2
-22r2
-32r3
2r2
O’’
-42r4
3r3
O4
4r4
42 r4eˆr4 4 r4eˆ 4 22r2eˆr2 2 r2eˆ 2 32eˆr3 3r3eˆ3
5/24/2016
Vector Component Solution
2
2
ˆ
ˆ
ˆ
ˆ
r e 4 r4e 4 2 r2er2 2 r2e 2 3 eˆr3 3r3eˆ3
2
4 4 r4
But: eˆr cosIˆ sin Jˆ
and eˆ sin Iˆ cosJˆ
Giving:
Y
ê
êr
Ĵ
Iˆ
X
42 r4 cos 4 4 r4 sin 4 22 r2 cos 2 2 r2 sin 2 32 r3 cos 3 3r3 sin 3
42 r4 sin 4 4 r4 cos 4 22 r2 sin 2 2 r2 cos 2 32 r3 sin 3 3r3 cos 3
5/24/2016
Coriolis Acceleration
3 (P)
4
2
1
aP4 aP2 aP4 / P2
2
aP4 aP2 r 2 r eˆr 2 2 r 2 r eˆ
1
2
ˆ
ˆ
r e 4 r4e 4 2 r2eˆr2 2 r2eˆ 2 reˆr2 22 reˆ 2
2
4 4 r4
42 r4eˆr4 4 r4eˆ 4 22 r2 r eˆr2 2 r2 22 reˆ 2
5/24/2016
Coriolis Direction
acor 2 r
a cor
V=r
r
r
V r
r
velocity of slider at time t,
and increment after time t
V
r
t
t
5/24/2016
V
r
t
t