Wave-current Interaction (WEC) in the COAWST Modeling System

Download Report

Transcript Wave-current Interaction (WEC) in the COAWST Modeling System

Wave-current Interaction (WEC) in the
COAWST Modeling System
Nirnimesh Kumar, SIO
with J.C. Warner, G. Voulgaris, M. Olabarrieta
*see Kumar et al., 2012 (might be in your booklet)
Implementation of the vortex force formalism in the coupled ocean-atmospherewave-sediment transport (COAWST) modeling system for inner shelf and surf zone
applications, Ocean Modelling, Volume 47, 2012, Pages 65-95.
*also see Olabarrieta et al., 2012
Governing Equations
Momentum
Balance
πœ•π‘Ό
𝟏
+ 𝑼. 𝛻 𝑼 + 𝛻𝑝 βˆ’ ℬ𝒛 + 𝑓𝒛 × π‘Ό = 𝟎
πœ•π‘‘
π†πŸŽ
Continuity
𝛻⋅𝑼=𝟎
Eulerian 𝑼
Mean Flow (𝑼) + Oscillatory Flow (π‘Όπ’˜ )
Recipes for Wave-Current Interaction
Radiation
Stress
𝑼 β‹… 𝛻 𝑼 = 𝛁 β‹… 𝑼𝑼 + 𝑼 𝛁 β‹… 𝑼 ;with𝛁 β‹… 𝑼 = 𝟎
Vortex Force
Formalism
𝑼⋅𝛻 𝑼=𝛁 𝑼
𝟐
𝟐+ 𝜡×𝑼 ×𝑼
This term on phase averaging gives vortex force
Radiation Stress
Excess flux of momentum due to presence of
waves. Explains wave setup, wave setdown,
generation of longshore currents, rip currents.
2-D Radiation Stress Equations (Longuet-Higgins, 1962, 1964)
𝑺=
𝑆π‘₯π‘₯
𝑆𝑦π‘₯
𝑆π‘₯𝑦
=𝐸
𝑆𝑦𝑦
Swash
𝑛 βˆ™ π‘π‘œπ‘  2 πœƒ + 1 βˆ’ 0.5
𝑛 βˆ™ 𝑠𝑖𝑛2πœƒ
2
𝑛 βˆ™ 𝑠𝑖𝑛2πœƒ
2
𝑛. 𝑠𝑖𝑛2 πœƒ + 1 βˆ’ 0.5
Wave Setup:
Balance between
quasi-static pressure
and radiation stress
divergence
Breaker Zone
Surf Zone
set-up
set-down
MWL
Longshore Currents:
Generated due to
gradient of radiation
Beach Profile stress in longshore
direction
Vortex Force (VF)
οƒΌ Product of Stokes drift and mean
flow vorticity (Craik and Leibovich,
1976).
Alongshore
𝑼𝑺𝒕
οƒΌ Physically representative of wave
refraction due to current shear
𝑼𝑺𝒕
𝜡×𝑼
= Stokes drift
𝑼 = Depth-mean ambient flow
𝑽𝑭 = 𝑉 𝑆𝑑
𝑼𝑺𝒕
𝑉(π‘₯)
πœ•π‘‰ πœ•π‘ˆ
πœ•π‘‰ πœ•π‘ˆ
βˆ’
𝑖 + π‘ˆ 𝑆𝑑
βˆ’
𝑗
πœ•π‘₯ πœ•π‘¦
πœ•π‘₯ πœ•π‘¦
Cross-shore
Adapted from Smith (2006, JPO)
Wave Rollers
Stokes-Coriolis Force, Surface and Bottom Streaming
Cross-shore Vel.
Wave-propagation direction
From Lentz et al., 2008
Alongshore Vel.
Wave-averaged Eqns.
Radiation Stress
πœ• 𝑒𝑙 𝑒𝑙
πœ• 𝑒𝑙 𝑣 𝑙
πœ• πœ”π‘  𝑒𝑙
πœ•π‘’π‘™
+
+
+
πœ•π‘‘
πœ•π‘₯
πœ•π‘¦
πœ•π‘ 
Local
Acc.
Advective accn.
βˆ’ 𝑓𝑣𝑙
= βˆ’π»π‘§
Coriolis +
Stokes-Coriolis
1 πœ•π‘ƒ
𝜌0 πœ•π‘₯
𝑧
Pressure
Gradient
πœ•π‘†π‘₯π‘₯ πœ•π‘†π‘₯𝑦
βˆ’
+
+ 𝐷π‘₯
πœ•π‘₯
πœ•π‘¦
Radiation
Stress
Bottom
Stress
Accounts for wave breaking
Vortex Force Formalism
πœ•π‘’ 𝑆𝑑
πœ•π‘£ 𝑆𝑑
πœ• πœ”π‘ 
𝑆𝑑
πœ•π‘’
πœ• 𝑒𝑒
πœ• 𝑒𝑣
πœ• πœ”π‘  𝑒
1 πœ•πœ‘
+
+
+𝑒
+
+
+𝑒
βˆ’ 𝑓𝑣 βˆ’ 𝑓𝑣 𝑆𝑑 = βˆ’
πœ•π‘‘
πœ•π‘₯
πœ•π‘¦
πœ•π‘₯
πœ•π‘¦
πœ•π‘ 
πœ•π‘ 
𝜌0 πœ•π‘₯ 𝑧
Local
Coriolis Stokes
Pressure
Advective accn.
Acc.
-Coriolis Gradient
πœ•π‘£ πœ•π‘’
𝑆𝑑 πœ•π‘’
𝑆𝑑
+ 𝑣
βˆ’
βˆ’ πœ”π‘ 
+ 𝐷π‘₯ +
β„± 𝑀π‘₯
Accounts for wave breaking
πœ•π‘₯ πœ•π‘¦
πœ•π‘ 
Vortex Force
Bottom Non-conservative
Stress
forcing
Wave-averaged Eqns.
Vortex Force Formalism
πœ•π‘’ 𝑆𝑑
πœ• πœ”π‘ 
πœ•π‘£ 𝑆𝑑
𝑆𝑑
πœ•π‘’
πœ• 𝑒𝑒
πœ• 𝑒𝑣
πœ• πœ”π‘  𝑒
1 πœ•πœ‘
+
+
+𝑒
+
+
+𝑒
βˆ’ 𝑓𝑣 βˆ’ 𝑓𝑣 𝑆𝑑 = βˆ’
πœ•π‘‘
πœ•π‘₯
πœ•π‘¦
πœ•π‘₯
πœ•π‘¦
πœ•π‘ 
πœ•π‘ 
𝜌0 πœ•π‘₯ 𝑧
Local
Coriolis Stokes
Pressure
Advective accn.
Acc.
-Coriolis Gradient
πœ•π‘£ πœ•π‘’
𝑆𝑑 πœ•π‘’
+ 𝑣 𝑆𝑑
βˆ’
βˆ’ πœ”π‘ 
+ 𝐷π‘₯ +
β„± 𝑀π‘₯
Accounts for wave breaking
πœ•π‘₯ πœ•π‘¦
πœ•π‘ 
Vortex Force
Bottom Non-conservative
Stress
forcing
Depth-limited
breaking
Whitecapping
Wave Rollers
Bottom
Streaming
Surface
Streaming
Depth-limited Breaking
π‘Ÿ
𝑏
1
βˆ’
Ξ±
)
β‹…
πœ–
𝐁𝑏 =
𝜌0 β‹… 𝜎
𝐀
β‹… 𝑓𝑏
𝑧
πœ– 𝑏 = Dissipation due to depth-limited breaking
(from empirical formulations or SWAN)
𝑏
𝑓 𝑧 =
𝐹𝐡
πœ‚
𝐹𝐡. 𝑑𝑧
βˆ’β„Ž
2πœ‹
𝐹𝐡 = cosh
𝑧+𝐷
π»π‘Ÿπ‘šπ‘ 
Surface
Intensified
Methodology
Coupled-Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system
Integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean
(Warner et al., 2010)
WRF
SWAN
ROMS
CSTMS
http://woodshole.er.usgs.gov/operations/modeling/COAWST/index.html
Wave-current Interaction (WEC)
WEC_MELLOR
(Mellor, 2011)
+ Roller Model
+ Streaming
Implemented in
Kumar et al., 2011
Implemented in
Kumar et al., 2012
*Processes in italics are optional
WEC_VF
(Uchiyama et al., 10)
+ Dissipation (depth)
+ Roller Model
+ Wave mixing
+ Streaming
cppdefs.h (COAWST/ROMS/Include)
WEC_MELLOR+
WEC_VF
(preferred
method for 3D)
Activates the Mellor (2011) method for WEC
Activate WEC using the Vortex Force formalism (Uchiyama et
al., 2010)
Dissipation (Depth-limited wave breaking)
WDISS_THORGUZA
Wave dissipation based on Thornton and Guza (1983).
See Eqn. (31), pg-71
WDISS_CHURTHOR
Wave dissipation based on Church and Thornton (1993).
See Eqn. (32), pg-71
WDISS_WAVEMOD
Activate wave-dissipation from a wave model. If
using SWAN wave model, use INRHOG=1 for
correct units of wave dissipation
Note:
(a) Use WDISS_THORGUZA/CHURTHOR if no information about wave dissipation is
present, and you can’t run the wave model to obtain depth-limited dissipation
(b)If you do not define any of these options, and still define WEC_VF,
the model expects a forcing file with information about dissipation
ROLLER MODEL (for Wave Rollers)
ROLLER_SVENDSEN
Wave roller based on Svendsen (1984). See Warner et al.
(2008), Eqn. 7 and Eqn. 10.
ROLLLER_MONO
Wave roller for monochromatic waves from REF-DIF. See
Haas and Warner, 2009.
ROLLER_RENIERS
Activate wave roller based on Reniers et al.
(2004). See Eqn. 34-37 (Advection-Diffusion)
Note:
If defining ROLLER_RENIERS, you must specify the parameter
wec_alpha (Ξ±r in Eqn. 34, varying from 0-1) in the INPUT file. Here 0
means no percentage of wave dissipation goes into creating wave
rollers, while 1 means all the wave dissipation creates wave rollers.
Wave breaking induced mixing
β€’ Enhanced vertical mixing from waves within
framework of GLS. See Eq. 44, 46 and 47. Based
on Feddersen and Trowbridge, 05
β€’ The parameter Ξ±w in Eq. 46 can be specified in the
TKE_WAVEDISS
INPUT file as ZOS_HSIG_ALPHA (roughness from
ZOS_HSIG
wave amplitude)
β€’ Parameter Cew in Eqn. 47 is specified in the INPUT
file as SZ_ALPHA (roughness from wave
dissipation)
Bottom and Surface Streaming
Bottom streaming due to waves using Uchiyama et al.
(2010) methodology. See Eqn. 22-26. This method
BOTTOM_STREAMING requires dissipation due to bottom friction. If not using
a wave model, then uses empirical Eq. 22.
BOTTOM_STREAMING Bottom streaming due to waves based on methodology
of Xu and Bowen, 1994. See Eq. 27.
_XU_BOWEN
Surface streaming using Xu and Bowen, 1994. See Eq.
SURFACE_STREAMING 28.
Note:
(a) BOTTOM_STREAMING_XU_BOWEN was tested in Kumar et al. (2012). It requires
very high resolution close to bottom layer. Suggested Vtransform=2 and
Vstretching=3
Shoreface Test Case
(Obliquely incident waves on a planar beach)
Hsig= 2m
Tp = 10s
ΞΈ = 10o
[0,0]
z
y
x
[1000,-12]
οƒ˜
οƒ˜
οƒ˜
οƒ˜
οƒ˜
Wave field computed using SWAN
One way coupling (only WEC)
Application Name: SHOREFACE
Header file: COAWST/ROMS/Include/shoreface.h
Input file: COAWST/ROMS/External/ocean_shoreface.in
Header File (COAWST/ROMS/Include)
Input File (COAWST/ROMS/External)
Input File (COAWST/ROMS/External)
Requires a wave forcing file
as one way coupling only
Forcing file for one way coupling
Data/ROMS/Forcing/swan_shoreface_angle_forc.nc
Should contain the following variables
Wave Height
Hwave
Wave Direction
Dwave
Wave Length
Lwave
Bottom Orbital Vel.
Ub_Swan
Depth-limited breaking
Dissip_break
Whitecapping induced breaking
Dissip_wcap
Bottom friction induced dissip.
Dissip_fric
Time Period
Pwave_top/Pwave_bot
WEC Related Output
Results (I of III)
Significant Wave Height
Sea surface elevation
Results (II of III)
Depth-averaged Velocities
Cross-shore Vel.
Longshore Vel.
Results (III of III)
Eulerian
Cross-shore
Longshore
Vertical
Stokes
WEC related Diagnostics Terms
(i.e., contribution to momentum balance)
Terms in momentum balance
πœ•
𝐻 ⋅𝑒
πœ•π‘‘ 𝑧
πœ•
πœ•
πœ•
πœ•
𝐻𝑧 𝑒𝑒 +
𝐻𝑧 𝑣𝑒 + 𝑒
𝐻𝑧 𝑒 𝑆𝑑 + 𝑒
𝐻𝑧 𝑣 𝑆𝑑
πœ•π‘₯
πœ•π‘¦
πœ•π‘₯
πœ•π‘¦
πœ•
πœ•
πœ”π‘  𝑒 + 𝑒
πœ”π‘ π‘†π‘‘
πœ•π‘ 
πœ•π‘ 
𝐻𝑧 β‹… 𝑓 β‹… 𝑣
𝐻𝑧 β‹… 𝑓 β‹… 𝑣 𝑠𝑑
πœ•πœ‘π‘
βˆ’π»π‘§ β‹…
|
πœ•π‘₯ 𝑧
πœ•π‘£ πœ•π‘’
𝐻𝑧 𝑣 𝑠𝑑
βˆ’
πœ•π‘₯ πœ•π‘¦
πœ”π‘ π‘†π‘‘
πœ•π‘’
πœ•π‘ 
Definition
Output
Variable
Local Acc.
u_accel/
ubar_accel
Horizontal
Advection
u_hadv/ubar_hadv
Vertical
Advection
u_vadv
Coriolis Force
u_cor/ubar_cor
Stokes-Coriolis
u_stcor/ubar_stcor
Pressure
Gradient
u_prsgrd/ubar_prs
grd
Vortex Force
u_hjvf/ubar_hjvf
Vortex Force
u_vjvf
Terms in momentum balance
Definition
Breaking + Roller
Acceleration +
Streaming
𝐻𝑧 β„± π‘€πœ‰ (see Eqn. 21)
Output Var.
u_wbrk/ubar_wbrku_wrol/ub
ar_wrol
u_bstm/ubar_bstmu_sstm/ub
ar_sstm
BREAKING THE PRESSURE GRADIENT TERM
πœ‘π‘
=𝑔
πœπ‘
𝑠
βˆ’ 𝜁 βˆ’ 𝑔 βˆ’ 𝒦 |𝜁 𝑐 +
πœ•πœ‘ 𝑐
βˆ’π»π‘§ β‹…
|
πœ•π‘₯ 𝑧
Pressure Gradient
u_prsgrd/ubar_prsgrd
Eulerian Contribution
ubar_zeta
Quasi-static response,
Eqn. 7
ubar_zetw
𝛻βŠ₯ 𝒦|𝜁 𝑐
Bernoulli-head
contribution, Eqn. 5
ubar_zbeh
𝑔𝛻βŠ₯ 𝒫|𝜁 𝑐
Surface pressure
boundary, Eqn. 9
ubar_zqsp
πœπ‘
βˆ’π›»βŠ₯
0
π‘”πœŒ
βˆ’ 𝐾 𝐻𝑧 𝑑𝑠 (𝐄πͺ𝐧. πŸπŸ‘, πŸ’πŸ—, π“πšπ›π₯𝐞 𝟐)
𝜌0
π‘”πœ 𝑐
+
βˆ’β„Ž
𝑔𝛻βŠ₯ 𝜁
π‘”πœŒ
𝑑𝑧
𝜌0
Vertical profile of terms in momentum balance
Cross-shore
Breaking Acc.
𝐡𝑏
Hor. Advection
πœ• 𝑒⋅𝑒
πœ• 𝑒 𝑆𝑑
+𝑒
πœ•π‘₯
πœ•π‘₯
Hor. VF
𝑒 𝑆𝑑
πœ• 𝑣
πœ•π‘₯
Pressure Gradient
βˆ’
1 πœ•πœ‘
𝜌 πœ•π‘₯
Vertical Mixing
πœ•
πœ•π‘’
𝑒′ 𝑀 β€² βˆ’ 𝑣
πœ•π‘ 
πœ•π‘ 
Vertical Advection
πœ• 𝑒 β‹… πœ”π‘ 
πœ• πœ” 𝑆𝑑
+𝑒
πœ•π‘₯
πœ•π‘ 
Alongshore
DUCK’ 94- Nearshore Experiment
DUCK’ 94, NC-Nearshore Experiment
Obliquely incident waves on a barred beach
(DUCK’ 94 Experiment)
οƒΌ Experiment conducted Oct. 12, 1994 (Elgar et al., 97; Garcez-Faria et al., 98, 00)
οƒΌ Wave field from SWAN.
οƒΌ One way coupling.
Wave Parameters, Depth-Averaged Flows
Hrms
Wave Height
Sea Surface Elevation
Ξ΅b
Ξ·
Depth averaged
cross-shore velocity
u
v
Depth averaged
longshore velocity
Vertical profile of Cross-shore & Longshore Vel.
Cross-shore
Eulerian
Stokes Drift
Notes:
𝑒𝑠𝑑 = 𝑒
𝑒𝑠𝑑 (𝑧) β‰  𝑒(𝑧)
Alongshore
Vertical Distribution
of Wave Dissipation
Kumar et al., 2012
Comparison to Field Observations
Cross-shore
Alongshore
Obs from Garcez-Faria et al., 1998, 2000
Kumar et al., 2012
Vertical profile of terms in momentum balance
Cross-shore
Breaking Acc.
𝐡𝑏
Alongshore
Notes:
Hor. Advection
Over the bar
(a) VF balances
Breaking
Hor. VF
(b) VM balances
Advection
πœ• 𝑒⋅𝑒
πœ• 𝑒 𝑆𝑑
+𝑒
πœ•π‘₯
πœ•π‘₯
πœ• 𝑣
𝑒 𝑆𝑑
πœ•π‘₯
Pressure Gradient
βˆ’
1 πœ•πœ‘
𝜌 πœ•π‘₯
Vertical Mixing
πœ•
πœ•π‘’
𝑒′ 𝑀 β€² βˆ’ 𝑣
πœ•π‘ 
πœ•π‘ 
Vertical Advection
πœ• 𝑒 β‹… πœ”π‘ 
πœ• πœ” 𝑆𝑑
+𝑒
πœ•π‘₯
πœ•π‘