Document 7433814

Download Report

Transcript Document 7433814

LIGO

The endpoint of massive stars in binaries: singlets, doublets? Triplets!

Maurice HPM van Putten MIT-LIGO Amir Levinson (TAU) Eve C. Ostriker (Maryland) Tania Regimbau (CNRS,Nice) Hyun Kyu Lee (Hanyang) Michele Punturo (Virgo,INFN) Gregory M. Harry (MIT-LIGO) David Coward (UWA) Ronald Burman (UWA) Kerr Fest, August 26-28 2004, Christchurch, NZ M.H.P.M. van Putten, A. Levinson, H.-K. Lee, T. Regimbau, M. Puntoro, G.M. Harry, Phys. Rev. D., 69, 044007

LIGO

BATSE Group, NASA http://image.gsfc.nasa.gov/docs/science/know_l1/bursts.html

LIGO Vela/Konus (1963-1979)

Vela GRB670702 (Klebesadel & Olson)

LIGO BATSE on CGRO (1991-2000)

LIGO

LIGO Beppo-Sax (Italian-Dutch, 1996-2002) E. Costa et al. Nature 1997

X-ray and optical transients to GRB970228 z=0.695

J. van Paradijs et al. Nature 1997

were PREDICTED, confirming shocked fireball models or ultrarelativistic ejecta from compact sources Paczynski and Rhoads 1993 Katz 1994 Rees and Meszaros 1993

LIGO

Geometrical beaming

j

L   1 / 

j

  1 / 

j

E1 E2 E3 t

E52-54 Harrison et al. 1999 Frail et al. 2001

E50-51 Harrison et al. 1999 Frail et al. 2001 Beaming factor about 500

GRB 980425/ SN1998bw T. Galama et al. Nature 1998 Very dim GRB… No evidence of beaming…

GRB association to supernovae

GRB030329/SN2003dh (z=0.168, D=800Mpc) GRB980425/SN1998bw (z=0.008, D=37Mpc)

Stanek, K., et al., 2003 Garnavich et al. 2003, Hjorth et al. 2003

LIGO GRBs are locked to the star-formation rate

0.5

0.4

0.3

0.2

observed simulated: observable simulated: total p SFR2 (z) 0.1

1/

f r

 0.0

0 450 (van 1 2 redshift z 3 Putten & Regimbau, 2003) 4 5 1 /

f b

 500 (Frail et al.

2001)

LIGO

Nomoto-Iwamoto-Suzuki sequence

Type IIb Type Ib Type Ic (H-rich) (H-poor) (H,He-poor) decreasing binary separation, removal of H and He-envelope

LIGO

Ia Ib/c II All 0.27(3) 0.11(3) 0.53(7) 0.91(8) [1e-11 MSolar/100yr (H/75)^2]

SNIb/c about 1 in 5 SNII

Cappellaro, Barbon & Turatto 2003

LIGO

N

obs (GRB )

N

( SN Type II )  ( 1  2 )  10  6 Porciani & Madau 2001

N

true (GRB )  450  500

N

obs ( GRB ) Frail et al. 2001 Van Putten & Regimbau 2001

N

true (GRB )

N

( SN Type Ib/c )  ( 2  4 )  10  3

LIGO Active nuclei Mirabel & Rodriques 1992

  2 .

46 Van Putten 1996

LIGO

B

Active nucleus

“The bag”

Spin-connection by open field-lines Bag of closed field-lines “turbulent shear flow in the torus resulting from the powerful torques acting on it” Van Putten, Science, 1999

Spin-up and down of a torus by equivalence to PSRs BH PSR + PSR Spin-up Spin-down    PSR   

H

   0

Suspended accretion: balance of competing torques on inner and outer face

van Putten & Ostriker 2001, van Putten & Levinson, 2003

LIGO

Open ergotube subtended by black hole-event horizon van Putten Phys. Rep. 2001, van Putten & Levinson, 2003

Spin-orbit coupling to charged particles

B

 

H J

eA

E

 

J

Frame-dragging * angular momentum van Putten, 2000, PRL, 84, 3752; 2004, subm.

INT Workshop July 12-14 2004, Seattle

A no-boundary mechanism for ejection of blobs (‘pancakes’)

E b

  10 47 erg  2

B

15 3

h M H H

 4  ( 

b

  ) /  2

H

van Putten, 2000, PRL, 84, 3752; 2004, subm.

Curvature-spin coupling

 

1 2

Riemann

*

Area

( closed loop) *

S

ab

Area

/

T

 

ab cd s c u d

 

c

 1 2 

abef R ef cd s a u b

d

 1 2

R abcd w ab

d

=0

With 

b

u b

:    

u c

  

R

 1 2 

abef R ef cd s a u b u d

Papapetrou (1951), Pirani (1956)

Spin-curvature coupling

Integral of force by curvature-spin coupling

E

 

J

Continuous Jet

In the Poynting-flux dominated limit of Blandford-Znajek 1977

E j E rot

 1 2 

H

4 

H

M R

van Putten & Levinson, 2003

E

 [

theory

]  4  10 50 erg  0 .

30     0 .

1  8 / 3  

E rot

max

E rot E

 [

observed

]  3  10 50 erg  

LIGO March 8 2002

Van Putten & Levinson 2002

LIGO

b 

m

a 

m

M b 

m

a M

m

=1

m

=2 •Theory of linear GWs agrees with obs to within 0.1% in PSR1913+16: Nobel Prize 1993 •Black-hole blob binary (b/a < 0.7506), blob-blob binary (b/a<0.3260): f=twice orbital frequency

b/a=0: Papaloizou-Pringle 1984; b/a>0: Van Putten 2002

LIGO

Modeling GRB-SNe from rotating black holes

E gw f gw

  0 .

2

M Solar

(

M H

500Hz(7

M Solar

/ 7

M Solar

)(  /

M H

)(  / 0 .

1 ) / 0 .

1 ) 

M

 

irr

T

 / 2

M

H Solar

( 1   )(

M H

/ 7

M Solar

)

Plus torus winds and MeV neutrinos

LIGO

Centered Nucleation

Kerr line (J=M^2) Disk line Time

Surge Nucleation

Next?

Van Putten, 2004

LIGO

Spin-up or Spin-down

Spin-up by continuing accretion (Bardeen 1970)

Synchronous BH-Torus spin

Radiatie spin-down against emission of GWs by spin-connection to non-axisymmetric torus

Time binary period (dimensionless units) Van Putten, 2004

Centered nucleation on free-fall time scale

t ff

 30 s  

M o M Solar

   1 / 2

r

10 10 cm 3 / 2 Most black holes leave high-density core prematurely by Bekenstein’s gravitational radiation recoil mechanism (1973)

R

[ SNIb/c  GRB] 

P

(

v kick

 10km/s)  0.5%  

v kick

10 km/s   2   

kick

100 km/s    2 Most Ib/c events decentered: failed GRBs!

(XRFs?) Van Putten, 2004

LIGO

  1 SNe with X-ray line-emissions   1   1

E SN

[ theory ]  2  10 51 erg    0.1

     0 .

1   2  

M

7

M O

 

E SN

[ SN1998bw ]  2  10 51 erg (Hoeflich et al.

1999)

Decentered Centered GRB Radiatively driven SN Davies et al. 2002 van Putten et al. 2004

‘‘ ’’

E

rot /

R

H  ~ 0 .

29

BIG MAC The hunting of the snark (Lewis Carroll 1876)

Nutritional information Serving size 1 Solar Mass Serving size per pack 5-14 per serving per pack Energy 6e46 J 4e47 J Fat total 2e47 J 1e48 J Sugars 0 0 All Else 0 0

A Prime Quality New Zealand Product

Measuring nutritional content

+ BIG MAC Voltage = angular velocity Energy = angular velocity * angular momentum

Present: Measure voltages

X-ray lines in disks Wilms et al. 2001 Fabian et al. 2002 Miller et al. 2002, 2004 Miniutti, Fabian and Miller 2004 Andy Fabian, this meeting BATTERY V

Soon: Perform calorimetry

Measure net temperature increase in water following complete discharge of battery BATTERY Detect energy GWB in complete spin-down of KBH Van Putten & Levinson, Science, 2002

X-ray lines in disks

•Detect BH spin (Fabian, this meeting) •Time[measurement] << Time[BH spin down]

Calorimetry on GWB in GRB-SN

•Detect total energy (“nutritional content”) •Time[measurement] = Time[BH spin-down]

LIGO

Radiation energies

Rotational energy of black hole Horizon dissipation Black hole output Torus input Baryon poor outflows GWB 4e53erg Gravitational radiation Torus winds SN 4e51erg irradiation of envelope Thermal and neutrino emissions Torus mass loss GRB 3e50erg X-ray emission lines 1e49erg SN remnant

E gw

 1000 

E

LIGO Hanford VIRGO Pisa first-ever detections of gravitational radiation observe the Universe in gravitational waves (new sources, relic waves early universe,…) probe inner engines of GRB-SNe observe ‘life’ the process of spin-down of Kerr black holes within one minute test general relativity,…

ACIGA-LIGO Gingin

LIGO

(1/year) M[GRB030329]<150MSolar (current LIGO sensitivity) S/N

LIGO

Simulation: instantaneous S/N-ratio = 0.15

D1 D2 D1*D2

Theory* versus observations

TBD

E gw f gw

B E SN E

 erg Hz 1 erg erg

E

 

X

erg

T s

s Event rate yr 1 2  10 53  0 .

1

M H

, 7 500  0.1

M

1

H

,7 3  10  9 @ 250 Hz 1  10 51  0 .

1  2 0 .

1

M H

, 7 2  10 50  0 .

30  8 / 0 .

1 3

M H

, 7 2  10 52  _  2 0 .

1

M H

, 7 45  8/3

M

0.1

H

, 7   1 0 .

3 TBD TBD 2  10 51 erg (SN1998bw) 3  10 50 erg  4 .

4  10 51 erg

T

90 tens of s 1 within 100Mpc * assuming

E rot

/ max

E rot

 1 / 2

Endpoint of binary evolution?

GRB+SN+GWB

“ Gravitational radiation, luminous black holes and gamma-ray burst supernovae ,” Cambridge University Press, to be published