Trapezoidal Rule of Integration Civil Engineering Majors Authors: Autar Kaw, Charlie Barker

Download Report

Transcript Trapezoidal Rule of Integration Civil Engineering Majors Authors: Autar Kaw, Charlie Barker

Trapezoidal Rule of Integration

4/27/2020 Civil Engineering Majors Authors: Autar Kaw, Charlie Barker http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates http://numericalmethods.eng.usf.edu

1

Trapezoidal Rule of Integration

http://numericalmethods.eng.usf.edu

3

What is Integration

b a

f ( x ) dx

Integration:

The process of measuring the area under a function plotted on a graph.

y f(x) I

a

b f ( x ) dx

Where: f(x) is the integrand a= lower limit of integration b= upper limit of integration

a b

http://numericalmethods.eng.usf.edu

x

4

Basis of Trapezoidal Rule

Trapezoidal Rule is based on the Newton-Cotes Formula that states if one can approximate the integrand as an n th order polynomial…

I

a

b f ( x ) dx

where

f ( x )

f n ( x )

and

f n ( x )

a

0 

a

1

x

...

a n

 1

x n

 1 

a n x n

http://numericalmethods.eng.usf.edu

5

Basis of Trapezoidal Rule

Then the integral of that function is approximated by the integral of that n th order polynomial.

a

b f ( x )

a

b f n ( x )

Trapezoidal Rule assumes n=1, that is, the area under the linear polynomial, 

b a f ( x ) dx

( b

a )

 

f ( a )

 2

f ( b )

  http://numericalmethods.eng.usf.edu

6

Derivation of the Trapezoidal Rule

http://numericalmethods.eng.usf.edu

Method Derived From Geometry

b a

f

1

( x ) dx

7 The area under the curve is a trapezoid. The integral

b a

f

(

x

)

dx

  1 2

( Sum of Area of parallel trapezoid sides )( height ) y

 1 2 

f ( b )

f ( a )

( b

a )

( b

a )

 

f ( a )

 2

f ( b )

 

f(x) f 1 (x) a b

Figure 2: Geometric Representation

http://numericalmethods.eng.usf.edu

x

Example 1

The concentration of benzene at a critical location is given by

c

 1 .

75 

erfc

 0 .

6560  

e

32 .

73

erfc

 5 .

758   where

erfc

  

x

 

e

So in the above formula 

z

2

dz erfc

 0 .

6560   0 .

6560  

e

z

2

dz e

approximate 

z

2

erfc

 0 .

6560   0 .

 6560 5

e

z z

2 

dz

 a) Use single segment Trapezoidal rule to find the value of erfc (0.6560). b) Find the true error, for part (a).

c) Find the absolute relative true error, for part (a).

a)

Solution

I

( b

a )

 

f ( a )

 2

f ( b )

 

a

 5

b

 0 .

6560

f

(

z

) 

e

z

2

f

( 5 ) 

e

 5 2  1 .

3888  10  11

f

( 0 .

6560 ) 

e

 0 .

6560 2  0 .

65029

Solution (cont)

a)

I

  0 .

6560  5    1 .

3888  10  11 2  0 .

65029     1 .

4124 b) The exact value of the above integral cannot be found. We assume the value obtained by adaptive numerical integration using Maple as the exact value for calculating the true error and relative true error.

erfc

 0 .

6560    0 .

6560 

e

z

2

dz

5  0 .

31333

b) c)

E t

True

Solution (cont)

Value

Approximat e Value

  0 .

31333  (  1 .

4124 )  1 .

0991 The absolute relative true error , 

t

, would be 

t

  True Error  100 True Value  0 .

31333    1 .

4124   0 .

31333  100  350 .

79 %

Multiple Segment Trapezoidal Rule

12 In Example 1, the true error using single segment trapezoidal rule was large. We can divide the interval [8,30] into [8,19] and [19,30] intervals and apply Trapezoidal rule over each segment.

f ( t )

 2000 

ln

 140000 140000  2100

t

 9

.

8

t

30  8

f ( t ) dt

 19  8

f ( t ) dt

 30  19

f ( t ) dt

(

19  8

)

 

f (

8

)

 2

f (

19

)

  

(

30  19

)

 

f (

19

)

 2

f (

30

)

  http://numericalmethods.eng.usf.edu

13

Multiple Segment Trapezoidal Rule

Hence: With

f (

8

)

 177

.

27

m / s f (

30

)

 901

.

67

m / s f (

19

)

 484

.

75

m / s

8  30

f

(

t

)

dt

 ( 19  8 )   177 .

27  2 484 .

75    ( 30  19 )   484 .

75  2 901 .

67    11266

m

http://numericalmethods.eng.usf.edu

14

Multiple Segment Trapezoidal Rule

The true error is:

E t

 11061  11266   205

m

The true error now is reduced from -807 m to -205 m. Extending this procedure to divide the interval into equal segments to apply the Trapezoidal rule; the sum of the results obtained for each segment is the approximate value of the integral.

http://numericalmethods.eng.usf.edu

15

Multiple Segment Trapezoidal Rule

Divide into equal segments as shown in Figure 4. Then the width of each segment is:

h

b

n

The integral I is:

a y f(x) I

a

b f ( x ) dx a a

b

a

4

a

 2

b

a

4

a

 3

b

a

4

b

Figure 4: Multiple (n=4) Segment Trapezoidal Rule

x

16

Multiple Segment Trapezoidal Rule

b a

 The integral I can be broken into h integrals as:

f ( x ) dx

a a

 

h f ( x ) dx

a a

   2

h f h ( x ) dx

...

a

( a

( n n

   1 2

f ) h ( ) h x ) dx

a

( n

b

 1

f ) h ( x ) dx

Applying Trapezoidal rule on each segment gives:

b a

f ( x ) dx

b

a

2

n

 

f ( a )

 2

i n

 1   1

f ( a

ih )

 

f ( b )

  http://numericalmethods.eng.usf.edu

Example 2

The concentration of benzene at a critical location is given by

c

 1 .

75 

erfc

 0 .

6560  

e

32 .

73

erfc

 5 .

758   where

erfc

  

x

 

e

z

2

dz

So in the above formula

erfc

 0 .

6560   0 .

6560  

e

z

2

dz e

z

 

erfc

 0 .

6560   0 .

 6560 

e z

2

dz

a) Use two-segment Trapezoidal rule to find the value of erfc(0.6560). 5 b) Find the true error, for part (a).

c) Find the absolute relative true error, for part (a).

Solution

a) The solution using 2-segment Trapezoidal rule is

I

b

a

2

n

 

f

(

a

)  2 

i

 1

n

  1

f

(

a

ih

) 

f

(

b

)  

n

 2

a

 5

b

 0 .

6560

h

b

a

  0 .

n

6560 2  2 .

172  5

Solution (cont)

Then:

I

 0 .

6560 2    5  

f

 2

i

2  1   1

f

a

ih

 

f

 0 .

6560        4 .

344 

f

  4 4 .

344 4  0 .

70695  1 .

3888 2

f

 2 .

828  10  11 

f

0 .

6560   2  0 .

00033627   0 .

65029 

Solution (cont)

b) The exact value of the above integral cannot be found. We assume the value obtained by adaptive numerical integration using Maple as the exact value for calculating the true error and relative true error.

erfc

 0 .

6560   0 .

6560  5

e

z

2

dz

so the true error is   0 .

31333

E t

 

True Value

 0 .

31333    

Approximat e

0 .

70695   0 .

39362

Value

Solution (cont)

c) The absolute relative true error , 

t

, would be 

t

  True Error  100 True Value  0 .

31333    0 .

70695   0 .

31333  125 .

63 %  100

Table 1 gives the values obtained using multiple segment Trapezoidal rule for:

erfc

 0 .

6560   0 .

6560 

e

 5

z

2

dz

Solution (cont)

n

1 2 3 4 5 6 7 8

Value

−1.4124

−0.70695

−0.48812

−0.40571

−0.37028

−0.35212

−0.34151

−0.33475

E t

1.0991

0.39362

0.17479

0.092379

0.056957

0.038791

0.028182

0.021426

t

% 350.79

125.63

55.787

29.483

18.178

12.380

8.9946

6.8383

a

% -- 99.793

44.829

20.314

9.5662

5.1591

3.1063

2.0183

Table 1: Multiple Segment Trapezoidal Rule Values

Example 3

.

Use Multiple Segment Trapezoidal Rule to find the area under the curve

f ( x )

 300 1 

x e x

from

x

 0 to

x

 10 Using two segments, we get

h

 10  0 2  5 and

f (

0

)

 300

(

0

)

 1 

e

0 0

f (

5

)

 300

(

5

)

 10

.

039 1 

e

5

f (

10

)

 300

(

10

)

 0

.

136 1 

e

10

Solution

Then:

I

b

2 

a n

 

f ( a )

 2  

n i

 1   1

f ( a

ih )

  

f ( b )

   10  0 2

(

2

)

 

f (

0

)

 2  

i

2  1   1

f (

0  5

)

  

f (

10

)

   10  4

f (

0

)

 2

f (

5

)

f (

10

)

  10  0 4  2

(

10

.

039

)

 0

.

136   50

.

535

Solution (cont)

So what is the true value of this integral? 10  0 1 300

x

e x dx

 246

.

59 Making the absolute relative true error: 

t

 246

.

59  50

.

535  100

%

246

.

59  79

.

506

%

Solution (cont)

Table 2: Values obtained using Multiple Segment Trapezoidal Rule for: 10 0  1 300 

e x x dx

n 1 2 4 8 16 32 64 Approximate Value 0.681

50.535

170.61

227.04

241.70

245.37

246.28

E t

245.91

196.05

75.978

19.546

4.887

1.222

0.305

t

99.724% 79.505% 30.812% 7.927% 1.982% 0.495% 0.124%

Error in Multiple Segment Trapezoidal Rule

The true error for a single segment Trapezoidal rule is given by:

E t

( b

a )

3 12

f " (

), a

  

b

where  is some point in

, b

What is the error, then in the multiple segment Trapezoidal rule? It will be simply the sum of the errors from each segment, where the error in each segment is that of the single segment Trapezoidal rule. 27 The error in each segment is

E

1  

( a

h )

a

 3 12

f " (

 1

), a

  1 

a

h

h

3 12

f " (

 1

)

http://numericalmethods.eng.usf.edu

Error in Multiple Segment Trapezoidal Rule

28 Similarly:

E i

 

( a

ih )

( a

( i

 1

) h )

 3 12

f " (

i ),

h

3 12

f " (

i )

It then follows that:

a

( i

 1

) h

 

i

a

ih E n

 

b

 

a

( n

12  1

) h

  3

f " (

n ), a

( n

 1

) h

 

n

b

h

3 12

f " (

n )

http://numericalmethods.eng.usf.edu

Error in Multiple Segment Trapezoidal Rule

29 Hence the total error in multiple segment Trapezoidal rule is

E t

i n

  1

E i

h

3 12

i n

  1

f " (

i )

( b

a

12

n

2

)

3

i n

  1

f " n (

i )

The term

i n

  1

f " (

i n )

is an approximate average value of the

f " ( x ), a

x

b

Hence:

E t

( b

a

12

n

2

)

3

i n

  1

f " (

i ) n

http://numericalmethods.eng.usf.edu

30

Error in Multiple Segment Trapezoidal Rule

Below is the table for the integral 30 8    2000

ln

  140000 140000  2100

t

   9

.

8

t

 

dt

as a function of the number of segments. You can visualize that as the number of segments are doubled, the true error gets approximately quartered.

n

2 4 8 16

Value

11266 11113 11074 11065

E t

-205 -51.5

-12.9

-3.22

t %

1.854

0.4655

0.1165

0.02913

a %

5.343

0.3594

0.03560

0.00401

http://numericalmethods.eng.usf.edu

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/trapezoidal _rule.html

THE END

http://numericalmethods.eng.usf.edu