Fluid-Structure Interaction Modelling with Europlexus Fast Dynamics Software S. Potapov
Download ReportTranscript Fluid-Structure Interaction Modelling with Europlexus Fast Dynamics Software S. Potapov
Fluid-Structure Interaction Modelling with Europlexus Fast Dynamics Software S. Potapov EDF R&D – Analyses in Mechanics and Acoustics Colloque GDR Interaction Fluide-Structure Sophia Antipolis, 26-27 September 2005 26-27 September 2005 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis 1 Outline • Industrial context • Numerical tool • Incompatible FS interface • Validation example • Conclusion 2 26-27 September 2005 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis Loss Of Coolant Accident (LOCA) GV1 GV4 GV2 Main Primary Circuit of PWR GV3 Pipeline model Générateur de vapeur (GV) PP1 Branche chaude (BC) PP2 Cuve Boucle 1 Pompe primaire (PP) Boucle 2 Boucle 4 Reactor vessel Boucle 3 PP4 Cuve PP3 Volume sous couvercle Branche en U (BU) Branche froide (BF) Ajutages d'entrée Mixed pipeline / 3D model Ajutages de sortie Plenum supérieur PP GV Volume d'entrée Collecteur annulaire anti-whipping devices break Coeur Dérivation coeur Fond de cuve 1D/3D Fluid-Structure link 3 26-27 September 2005 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis EUROPLEXUS fast dynamics code (initiated by CEA in 1978, and developed jointly by CEA, JRC, EDF, SAMTECH since 2000) Principal models available for the FSI analysis: Main characteristics: transient phenomena (wave propagation) fluids, structures and their interaction (FSI) Lagrangian, Eulerian and ALE formulations geometric and material non-linearities 1D, 2D, and 3D modelling (1D/3D connexions) finite element formulation + transport terms explicit time integration 1D elements : • pipes: rigid and flexible walls • multi-pipe links: • pump, break, local pressure losses 3D fluid and structure elements Domains of analysis: 1) 2) 3) 4) 5) 4 pipe circuits hydrodynamics explosions impacts robotics 26-27 September 2005 • tetrahedron, cube • beam, plate, shell • 1D-3D F and S connexions Applications: - nuclear reactors - chemical plants - off-shore structures - submerged pipelines - safety valves Compressible fluid materials: Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis • gas (perfect) • two-phase water - homogeneous equilibrated - steam tables • pressure losses (distributed) 3D Fluid-Structure coupling in EUROPLEXUS vF Fluid n F r F vS S Dynamic equilibrium over the whole domain: -r S Structure n M ü = Fext - Fint Kinematic links: compatible meshes equality of reactions compatibility condition Cv=b Equilibrium for the FS interface d.o.f.: n m n ü n = fext - fintn + r n For inviscid fluid: vF .n = vS .n Reactions at the FS interface: r n = CT l Incompatible FS interfaces: Hierarchical type interface Fluid Structure 5 (a) 26-27 September 2005 (b) (c) (d) Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis Non-matching coupling conditions v F n v S* n node noeud point v F n F v S* n F v S* i 1 NSi (S * ) v Si n v F n F [i 1 NSi (S * ) v Si ] n F 0 n 6 26-27 September 2005 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis FSI simulation of LOCA accident in HDR HeissDampfReaktor (KFA/ISR, Germany, 1980) Experiment V32 Initial conditions: (Superheated Steam Reactor) break Membrane Blowdown nozzle Blowdown nozzle: L = 1.37 m Pressure A = 0.0314 m2 vessel Core barrel: H = 7.57 m R = 1.32 m t = 0.023 m Core barrel Downcomer Mass ring Lower plenum Mass ring: M = 13500 kg 7 26-27 September 2005 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis water P = 11 MPa T = 300 °C HDR model with EUROPLEXUS Coarse mesh Refinment procedure Fine mesh Nb. of elements : Fluid : 35854 Structure: 2080 8 26-27 September 2005 Fluid : 34204 Structure: 1148 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis Structure mesh Fluid mesh Incompatible interface Evolution of pressure 9 P x 0.1 (MPa) Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis compatible mesh incompatible mesh 26-27 September 2005 P x 0.1 (MPa) P x 0.1 (MPa) Time histories of pressure and displacements 11,5 1,4 11,0 1,2 Experiment (Test V32) Europlexus (matching meshes) KS1002 10,5 Displacement (m) Pressure (MPa) Europlexus (non-matching meshes) 10,0 9,5 9,0 Experiment (Test V32) Europlexus (matching meshes) Europlexus (non-matching meshes) BP9136 8,5 1,0 0,8 0,6 0,4 0,2 0,0 0 8,0 0 10 20 30 40 10 20 50 1,0 11,0 0,5 Displacement (m) Pressure (MPa) 11,5 10,0 9,5 9,0 Experiment (Test V32) Europlexus (matching meshes) BP9140 8,5 0 10 10 20 30 40 50 26-27 September 2005 30 40 50 -1,0 KS1026 Experiment (Test V32) Europlexus (matching meshes) Europlexus (non-matching meshes) -2,0 Time (ms) 10 20 -0,5 Europlexus (non-matching meshes) 0 50 0,0 -1,5 8,0 40 Time (ms) Time (ms) 10,5 30 -0,2 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis Time (ms) Calculations with and without FSI 11,5 1,0 Differential pressure (MPa) Pressure (MPa) 11,0 10,5 10,0 9,5 9,0 Experiment (Test V32) Europlexus (FSI calculation) Europlexus (rigid structure) BP9133 8,5 0,5 0,0 0 10 40 50 40 50 -1,0 KP0032 Experiment (Test V32) Europlexus (FSI calculation) -1,5 Europlexus (rigid structure) 0 10 20 30 40 -2,0 50 Time (ms) Time (ms) 1,0 11,5 Differential pressure (MPa) 11,0 Pressure (MPa) 30 -0,5 8,0 10,5 10,0 9,5 BP8302 9,0 Experiment (Test V32) Europlexus (FSI calculation) 8,5 Europlexus (rigid structure) 0,5 0,0 0 10 20 30 -0,5 -1,0 -1,5 Experiment (Test V32) Europlexus (FSI calculation) Europlexus (rigid structure) 8,0 0 10 20 30 40 50 -2,0 Time (ms) 11 20 26-27 September 2005 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis Time (ms) KP0040 Time performance Matching mesh: Non-matching mesh: Fluid: 35854 FE Structure: 2080 FE Fluid: 34204 FE Structure: 1148 FE on Compaq a 12 26-27 September 2005 Case Mesh type Number of elements (F/S) Nomber of time steps CPU time [h] CPU time ratio Speedup factor A Compatible 35854/2080 41981 216 25 1.00 - B Incompatible 34204/1148 15269 35 4 0.16 6.2 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis Conclusion 13 • The use of the new non-matching FS interface algorithm allows realistic prediction of different physical phenomena characterising the LOCA situation • This algorithm allows optimising physical modelling and mesh generation for the fluid and structure domains • The CPU time is drastically reduced 26-27 September 2005 Colloque GDR Intéraction Fluide-Structure, Sophia Antipolis