Two-Span LRFD Design Example Karl Barth and Jennifer Righman West Virginia University
Download ReportTranscript Two-Span LRFD Design Example Karl Barth and Jennifer Righman West Virginia University
Two-Span LRFD Design Example Karl Barth and Jennifer Righman West Virginia University Objective The primary focus of this example is to demonstrate the use of Appendix A and Appendix B for a two-span continuous structure Appendix A Overview Accounts for the ability of compact and non-compact sections to resist moments greater than My Economy gained by Appendix A provisions increases with decreasing web slenderness Effects of St. Venant torsion are incorporated Appendix B Overview Traditional AASHTO specifications have permitted up to 10% of the maximum pier section bending moment to be redistributed to positive bending regions Appendix B provisions explicitly compute the level of redistribution based on an effective plastic moment concept for sections meeting prescribed geometric criteria Design Information Design Information Framing Plan Design Notes 2004 AASHTO LRFD Specifications, 3rd Edition Structural steel: ASTM A709, Grade 50W Normal weight concrete (145 pcf) with fc’=4 ksi Fyr = 60 ksi for reinforcing steel Operational importance, redundancy, and ductility factors = 1.0 Design Loads – DC1 DC1 loads are equally distributed to all girders Slab Haunch (average wt/length) Overhang taper Girder (average wt/length, varies) Cross-frames and misc. steel Stay-in-place forms =0.983 =0.017 =0.019 =0.200 =0.015 =0.101 k/ft k/ft k/ft k/ft k/ft k/ft S =1.335 k/ft Design Loads – DC2 and DW DC2 Barrier weight = 520 lb/ft Weight/girder = (0.520)x(2)/(4) = 0.260 k/ft DW Future wearing surface = 25 psf DW = (0.025 ksf)x(34 ft)/4 = 0.213 k/ft Design Loads – WS and WL WS Wind forces are calculated assuming bridge is located 30’ above water in open country Wind on upper half of girder, deck, and barrier assumed to be resisted by diaphragm action of the deck WS = 0.081 k/ft (on bottom flange) WL Assumed to be transmitted by diaphragm action WL is neglected Design Loads – Live Load Controlling case of: Truck + Lane Tandem + Lane 0.9 (Double Truck + Lane) (in negative bending) Impact factors used for all vehicular live loads (excluding lane load) I=1.15 for fatigue limit state I=1.33 for all other limit states Design Loads – Live Load Live load effects are approximated using distribution factors Interior girder AASHTO empirical equations are used Exterior girder AASHTO empirical equation correction factor Lever rule Special analysis Interior Girder Distribution Factors Moment Varies with girder dimensions due to Kg term K g n I A eg2 400,000 to 700,000 One design lane 0.4 0.3 S S K g 0.06 3 14 L 12.0 L t s 0.1 0.4 10 10 0.06 14 90 0.3 (702025) 3 (12.0) (90) (8) 0.1 0.523 Two or more design lanes 0.6 0.2 S S K g 0.075 3 9.5 L 12.0 L t s 0.1 0.6 10 10 0.075 9.5 90 0.2 (702025) 3 (12.0) (90) (8) 0.1 0.756 Interior Girder Distribution Factors Shear One design lane S 10.0 0.36 0.36 0.760 25.0 25.0 Two or more design lanes (CONTROLS) S S 0.2 12 35 2. 0 10 10 0 .2 12 35 2.0 0.952 Exterior Girder Distribution Factors AASHTO exterior girder correction factor g e ginterior Moment de 2 e 0.77 0.77 0.990 1.0 9.1 9.1 Shear de 2 e 0.6 0.6 0.800 1.0 10 10 Empirical formulas for exterior girder will not control Exterior Girder Distribution Factor Lever Rule – One Design Lane 10 6 DF 0.5 0.5 MPF 10 DF 0.7 1.2 0.84 Exterior Girder Distribution Factor Special Analysis DF NL NB xEXT e NL 2 x NB One design lane 1 (15)(12) 1.2 0.732 DF MPF 2 2 4 2(15 5 ) Two or more design lanes 2 (15)(12 0) 1.0 0.860 DF MPF 2 2 4 2(15 5 ) Controls for Moment Distribution Factors for Fatigue Based on one design lane No multiple presence factor applied Maximum one lane distribution factor results from the lever rule, i.e., EXTERIOR GIRDER CONTROLS DF = 0.70 Unfactored Design Moments 2000 1500 1000 Moment, kip-ft 500 0 0 0.2 0.4 0.6 -500 -1000 -1500 -2000 DC1 DC2 DW LL+IM -2500 Distance Along Span, x/L 0.8 1 Limit States All applicable limits states for steel structures were considered Strength Strength Strength Strength Strength I = 1.25DC + 1.5DW + 1.75(LL+I) III = 1.25DC + 1.5DW + 1.4WS IV = 1.5(DC + DW) V = 1.25DC + 1.5DW + 1.35(LL+I) + 0.4WS Service Strength I controls in this example Service II = 1.0(DC + DW) + 1.3(LL+I) Fatigue = 0.75(LL+I) 6.10 Provisions Addressed Cross section proportion limits Constructibility Serviceability Fatigue Strength Appendix A Design 12 x 3/4 63’ 12xx7/16 3/4 36 16 36 xx 1-1/2 7/16 16 x 1-1/2 63’ 16 X 1-1/4 54’ 16 36 x x 1-1/4 1/2 x 1/2 1636 x 2-1/2 16 x 2-1/2 54’ 12 x 3/4 63’ x 3/4 36 12 X 7/16 1636 x 1-1/2 x 7/16 16 x 1-1/2 63’ Cross Section Proportion Limits D 150 tw D 36 82 150 t w 7 16 bf 12.0 2t f bf 12 8 12.0 2t f 20.75 bf t f 1.1t w 0 .1 D 6 Iy c Iy t b f 12 10 D 36 6 6 6 t f 0.75 1.1(0.5) 0.55 3 1 123 412 0.1 1 121.5163 0.21 10 Constructibility For discretely braced compression flanges fbu fl f RhFy c 1.01.050 50 ksi 1 fbu fl f Fnc varies, 49.8 ksi 3 Fnc may be computed using Appendix A which accounts for increased torsional resistance For discretely braced tension flanges and continuously braced flanges fbu fl f RhFy f 1.01.050 50 ksi Constructibility - Loads Vertical DC1 loads are determined considering deck casting sequence Lateral flange bending stresses are induced by the overhang form brackets Construction dead and live loads considered Constructibility Check Stresses in compression flange of positive bending section control the allowable cross-frame spacing Strength I fbu fl 1.2521.47 19.97 46.8 ksi 50 ksi Strength IV fbu fl 1.521.47 14.13 46.3 ksi 50 ksi Service Limit State For top flange ff 0.95RhFy 0.951.050 47.5 ksi For bottom flange fl ff 0.95RhFy 0.951.0 50 47.5 ksi 2 Bottom flange in positive bending (controls) fl 692 135 111 1.31615 0 12 33.1 ksi 47.5 ksi ff 2 843 1131 1219 2 Fatigue Limit State Fatigue requirements significantly impact the design of the positive bending region Bolted stiffener to flange connections employed at locations of maximum stress range, i.e., cross-frames at midspan Bolted connections / Category B details Fmax 6.36 ksi 8.0 ksi Welded connections / Category C’ details Fmax 5.92 ksi 6.0 ksi Fatigue Limit State (cont.) Use of bolted cross-frame connections requires that net section fracture requirements are satisfied An Fu Fy t ft 0.84 A g Assuming one 7/8” diameter bolt hole is used: A n 16(1.5) (7 1 )(1.5) 22.5 in2 8 8 A g 16(1.5) 24.0 in2 22.5 ft 0.84 65 51 ft Fy t 50 24.0 ft 44.6 50 OK Positive Flexural Capacity If Dp 0.1Dt, then Mn Mp Dp 7.709 in. 0.1Dt 0.1(8 2 36 1.5) 4.75 in. Otherwise D 7.709 Mn Mp 1.07 0.7 p 60911.07 0.7 5825 kips in. Dt 47.5 Unless certain geometric conditions are satisfied Mn 1.3R hMy 1.31.0 4667 6067 kips in 1 fl S xt 4026 kips ft f Mn 5825 kip ft 3 Mu Ductility check: Dp 7.709 in. 0.42Dt 0.4247.5 19.95 in. Negative Flexural Capacity Appendix A Fy f 50 ksi 70 ksi 2Dc 215.32 E 29000 61.28 5.7 5.7 137.3 tw 0.5 Fy c 50 Therefore, Appendix A is applicable. Web Plastification Factors Check if web is compact - NO 2Dcp tw E Fy c 2(10.48) 41.92 pw Dcp 37.80 2 0 .5 Mp 0.54 0.1 R M h y Noncompact web plastification factors are used Web Plastification Factors (cont.) w 2Dc 61.28 tw Dc 37.8 15.32 55.28 pw Dcp D 10.48 cp pw Dc rw 5.7 E 137.3 Fy c RhMy c w pw D Mp Mp c 1 1 Mp rw pw Dc My c My c Rpc RhMy t w pw D Mp Mp c Rpt 1 1 Mp rw pw Dc My t My t Rpc 1.04 Rpt 1.64 Compression Flange Local Buckling Resistance Check if flange is compact - YES f bf c 16 E 29000 3.20 0.38 0.38 9.15 2t f c 22.5 Fy c 50 Mnc FLB RpcMy c 1.04 6168 Mnc FLB 6415 kips ft Lateral Torsional Buckling Resistance rt bf c 1 Dc t w 121 3 b f ct f c 4.437 E 29000 Lp rt 4.437 107.8 Lb 180 Fy c 50 E Fy r 2 Fy r S xch J 575.8 1 1 6.76 S xch E J Lr 1.95rt Lp Lb Lr Noncompact unbraced length Lateral Torsional Buckling Resistance S xt Fy r min 0.7Fy c, RhFy t , Fy w S xc 916 min 0.7(50) 35 ksi, 1.0 50 30.95 ksi, 50 ksi 1480 Mnc LTB Fy rS xc Lb Lp RpcMy c RpcMy c Cb 1 1 RpcMy c Lr Lp Mnc LTB 6415 kips ft Mnc minMnc FLB , Mnc LTB Mnc 6415 kips ft. Negative Flexural Capacity Summary 1 Mu fl S xc f Mnc 3 5992 kips ft. 6415 kips ft. Mu f RptMy t 5992 kips ft. 1.01.633815 6218 kips ft. Appendix A Performance Ratios Positive Bending Region Constructibility (Strength I) Top Flange 0.94 Bottom Flange 0.30 Constructibility (Strength IV) Top Flange 0.93 Bottom Flange 0.36 Top Flange 0.47 Bottom Flange 0.70 Bolted Conn. 0.80 Welded Conn. 0.98 Flexure 0.69 Shear 0.83 Service Limit State Fatigue and Fracture Limit State Strength Limit State (Strength I) Appendix A Performance Ratios Negative Bending Region Constructibility (Strength I) Top Flange 0.46 Bottom Flange 0.34 Constructibility (Strength IV) Top Flange 0.55 Bottom Flange 0.39 Top Flange 0.57 Bottom Flange 0.69 Service Limit State Fatigue and Fracture Limit State Strength Limit State (Strength I) Bolted Conn. NA Welded Conn. 0.58 Flexure 0.96 Shear 0.78 Appendix B Design Moment redistribution procedures are used to create a more economical design 63’ 54’ 63’ 12 x 3/4 16 x 1 12 x 3/4 36 x 7/16 36 x 1/2 36 x 7/16 16 x 1-1/2 16 x 2 16 x 1-1/2 Appendix B Requirements Appendix B is valid for girders meeting certain geometric and material limits Web Proportions D 36 72 150 t w 0 .5 2Dc E 64.2 6.8 163.8 tw Fy c Dcp 14.48 0.75D 27 Appendix B Requirements (cont.) Compression flange proportions bf c E 4.0 0.38 9.15 2t f c Fy c b f c 16 D 8.47 4.25 Lateral Bracing M1 rtE Lb 180 0.1 0.06 191 M2 Fy c Appendix B Requirements (cont.) Shear Section Transitions V v Vcr No section transitions are permitted within the first cross-frame spacing on each side of the pier Bearing Stiffeners Bearing stiffeners are required to meet projecting width, bearing resistance, and axial resistance requirements Redistribution Moment Amount of moment redistributed to positive bending region is a function of the effective plastic moment, Mpe Higher Mpe values are permitted for girders with either: Transverse stiffeners placed at D/2 or less on each side of the pier 2Dcp E 2 . 3 “Ultra-compact” webs such that t F w Alternative Mpe equations are given for strength and service limit states yc Redistribution Moment (cont.) b f c Fy c b f c Fy c D D Mpe 2.63 2.3 0.35 0.39 Mn Mn tfc E bf c t f c E b f c Mpe 4951 kip ft Redistribution moment at pier: Mrd Me Mpe 0.2 Me Mrd Me f Mpe 5704 4951 753 kips ft. 13%Me Redistribution moment varies linearly at other locations along the span Pier 1 Mrd1 Pier 2 Mrd2 Redistribution Moments (Strength I) 6000 Moment, kips-ft. 4000 2000 0 0 0.2 0.4 0.6 0.8 1 1.2 -2000 -4000 M+ M+ + Mrd MM- + Mrd -6000 Length along span, x/L 1.4 1.6 1.8 2 Appendix B Design Checks Positive bending capacity Negative bending capacity within one lateral brace spacing on each side of the pier Not evaluated Negative bending capacity at other locations Evaluated for positive bending moment plus redistribution moment (at strength and service limit states) Evaluated for negative bending moment minus redistribution moment Otherwise, same as before Appendix B Performance Ratios Positive Bending Region Constructibility (Strength I) Top Flange 0.94 Bottom Flange 0.30 Constructibility (Strength IV) Top Flange 0.93 Bottom Flange 0.36 Top Flange 0.47 Bottom Flange 0.70 Bolted Conn. 0.80 Welded Conn. 0.99 Flexure 0.75 Shear 0.83 Service Limit State Fatigue and Fracture Limit State Strength Limit State (Strength I) Appendix B Performance Ratios Negative Bending Region Top Flange Bottom Flange Top Flange Bottom Flange 0.55 0.42 0.66 0.48 Fatigue Limit State Top Flange Bottom Flange Welded Conn. 0.62 0.79 0.55 Strength Limit State (Strength I) Flexure* Shear 0.48 0.78 Constructibility (Strength I) Constructibility (Strength IV) Service Limit State * Design of negative bending region controlled by 20% limit Appendix A / Appendix B Design Comparisons Positive moment region same in both designs (controlled by fatigue) Cross-frame spacing the same (controlled by constructibility) Appendix B negative moment region 18% lighter Appendix B girder 6% lighter overall 63’ 54’ 63’ 63’ 54’ 63’ 12 x 3/4 16 x 1-1/4 12 x 3/4 12 x 3/4 16 x 1 12 x 3/4 36 x 7/16 36 x 1/2 36 x 7/16 36 x 7/16 36 x 1/2 36 x 7/16 16 x 1-1/2 16 x 1-1/2 16 x 1-1/2 16 x 2-1/2 APPENDIX A DESIGN 16 x 2 APPENDIX B DESIGN 16 x 1-1/2 Concluding Comments Fatigue requirements significantly impact the design of the positive moment region due to the relatively high distribution factor for the exterior girder Constructibility and Appendix B requirements led to the use of a 15 ft cross-frame spacing throughout Use of Appendix A leads to increasing economy with decreasing web slenderness (that is a section with a noncompact web at the upper limit will gain very little from Appendix A) Appendix B provides even greater economy