Document 7278971
Download
Report
Transcript Document 7278971
Non-linear Aggregations in Large-Scale MultiDimensional Cubes
Georges Bory, Quartet Financial Systems
Distributed and Grid Computing in
Computational Finance.
Inria, Sophia Antipolis, October 20th
2008
www.quartetfs.com
Agenda
OLAP cubes for finance
– Non linear behaviours
– Time constraint
ActivePivot solution
Performance and future work
www.quartetfs.com
2
OLAP cubes for Finance
A lot of data
» And not much time to understand it
www.quartetfs.com
A lot of data
Historical Var
– 2 years
– 500 000 deals
» 250 Million values
Monte-Carlo Var
– 5 000 simulations
– 100 000 deals
» 500 Million values
Potential exposure amount
– 100 000 deal
– 500 simulations
– 20 future points
» 1 Billion values
www.quartetfs.com
OLAP cubes for Finance
Organize data into business hierarchies
» Drill down from top to bottom
» Filter
» Drill thru individual trades, scenario
www.quartetfs.com
Business Hierarchies
High Cardinality Levels
Securities: >10 000
• Counterparty: > 2 000
• Time buckets: 80 future strips, >10 000 days
•
Low Cardinality Levels
Books
• Traders
• Currencies
• Index
•
www.quartetfs.com
OLAP cardinality curse
OLAP Cardinality Curse
7000
6000
Memory
5000
4000
Cube
3000
2000
1000
0
1
2
3
4
Dimensions
5
6
www.quartetfs.com
Non linear behaviours
Value at Risk
– Variance, Nth percentile loss
Potential Exposure Amount
– Max (Expectation, 0)
www.quartetfs.com
Time constraint
Any time lost in aggregation is expensive in grid
hardware costs
www.quartetfs.com
Agenda
OLAP cubes for finance
– Non linear behaviours
– Time constraint
ActivePivot solution
Performance and future work
www.quartetfs.com
10
ActivePivot solution
Non linear aggregation
» Aggregate objects rather than values
» Apply operators to aggregated objects
www.quartetfs.com
ActivePivot solution
Compression Algos
7000
6000
Memory
5000
Cube
4000
QC-Tab
3000
QC Tree
2000
1000
0
1
2
4
3
Dimensions
5
6
www.quartetfs.com
Transactional OLAP engine
www.quartetfs.com