Chap 2 Basics of hydraulics Disadvantages

Download Report

Transcript Chap 2 Basics of hydraulics Disadvantages

Chap 2 Basics of hydraulics
Advantages of hydraulic control:
― easy of control
― high power output
― good dynamic response
― good dissipation of heat
Disadvantages:
― high energy losses
― possibility of leakages(dirty)
§ Work
w = F×L
where
w:work(N˙m)
F:Force(N)
L:Distance(m)
§ Pascal´s Law(Multiplication of force)
p=
F1
A1
=
F2
A2
= constant
w = F1L1 = F2L2
(assume no energy losses)
Power
FL W
P= t = t
=F×
dL
dt
=(p × A)(Q A )= p × Q
where P:power
p:pressure
Q:flow rate (l min )
F1
L1
F2
L2
A1
A2
HW #1
(Application of law of Pascal )
G
A2=40 cm2
A3=50 cm2
Qp=50 l/min
G=10 5N
Pmax=45 bar
h=25 cm


h+d
x, x
y, y
d
A1
A3
P3
F1
P2
P1
A2
Questions:
(1) 將工件G舉起之最小壓力(P3min)=?
(2) 此時相對應之面積 A1=?
(3) 推力 F1=?

(4) 速度 y=?

(5) 速度 x
=?
(6) 工作油壓缸由底上升至頂端所需之時間 t=?
P=
Pbar Q l
min
600

(kW) 1W =
N m
sec
Ex:How to derive?
HP(horsepower)=
P Watt 
746
In the case of rotary actuator(motor)
Where Q: Flow rate
V1: Displacement
Q
of pump
n1 V1
T1
Pn
n2 V2
T2
For pump:
V1=A×πd
Q1=n1×V1
T: Torque
For motor:
Piston
V2 = A ×πd
Q2 = n2 × V2
If Q1= Q2
d
n1v1=n2v2
n2
n1
=
V1
V2
2
A
HW #2
Q
Given :
n1 =1450rpm
n2 =400rpm
T2=250N-m
Pn=200bar
V1
n1
T1
Pn
V2
n2
T2
Please calculate:
(1) The optimal displacement of motor V2 = ?
Note: as follows are different types to choose :
V2 = 40 / 56 / 71 / 90 / 125 cm3/rev
(2) Pressure Pn= ? , Flow rate Q= ? , Displacement of pump
V1= ? and the Power P = ? (according to the chosen
V2)
Torque T1= F × di
=(A×ΔP)
V1
d
=( d)×Δp×
2
d
2=
V1 pd
V1 p
=
2d
2
similarly:
V p
T2 = 2
2
Torque transfer relation:
T = V
2
2
T1
V1
Assume no energy loss:
P1= T1w1
= V p× 2π× n1
2
=V1× n1 ×Δp
=Q1 ×Δp
1
Output power of motor:
P2=Q2×Δp
Total efficiency=η=
P2
=1(ideal
P1
case)
Conservation of Mass(Continuity
Equation)
 u
n
dA
+ d  dv =0
dt
.
.
m2
m1
ρ1A1V1
.
m. 1 =ρ1Q1=ρ1A1V1
m 2 =ρ2Q2=ρ2A2V2
if ρ1=ρ2 (incompressible fluid)
ρ2A2V2
pipe
then V1A1=V2A2
Ex:
A

V2A2
V1A1
A1ρV1-A2ρV2-Aρ
If ρ: constant
V1A1 -V2A2 = A
dl
=0
dt
dl
dt
Conservation of Energy(Bernoulli’s
Equation)
P2 V2
P1V1
h1
1
h2
2
Total Energy at any point
= Elevation+Pressure+Kinetic
= mgh+ mp + mv

2
’
Bernoulli s equation:
P
P
V
V
+
+h
=
+
+h2
1

g
g
2g
2g
2
2
2
1
2
1
2
2
1
Ex1:(continuity equation)
A1
A2
d
Q=25
l
min
D=50
mm
d=30 mm
D
d1=d2=15mm
d1
d2
Q
Questions:
Piston velocity =?
Velocities of the fluid in the inlet and outlet pipes = ?
Answer:
(1) A1=
A2=
1
2
2
4πD =19.6㎝
1 π(D2-d2)=12.56㎝2
4
Cross section area of inlet and outlet pipes
A3= 1 4πd12=1.77㎝2
Piston velocity V1=
Q
A1
=0.21
m
s
(2)Velocity of the fluid in inlet pipe:
V3=
Q
m
=2.36
A
s
3
From continuity equation:
AV
2
1

AV
3
4
Where V4 :velocity of the fluid in outlet pipe
Thus V4= A V =1.49
A
2
1
3
m
s
Ex2(Application of Bernoulli’s equation)
g
cm 3
ρ=0.8
=800
70bar
P1
kg
m3
P2
d2=0.5cm
d1=3cm
V1
V2
Q=10 l/min
Assume:no work and no energy dissipation
Question:P2=?
Answer: h1=h2
V1=
Q
A1
=
10 
; ρ1=ρ2
10 3  m 3 
60sec
= 0.236
m
1  0.03 2
4
V2=( d1 )2×V1= 8.496
m
d2
s
s
From Bernoulli’s equation:
P1
g
+
2
V1
2g
70  10 5
800  9.81
=
+
P2
g
+
V2
2
2g
P2
0.236 2 =
+
2  9.81 800  9.81
P2=69.7×105
=69.7 bar
N
8.496 2
2  9.81
m2
(Pressure drop : 0.3bar)
Flow through orifice
∵ A2«A1 ∴V1«V2
P1+ 1/2 ρV12 = P2 + 1/2 ρV22
V2=
2 p *

where Δp*=P1-P2
Flow rate Q=A2×V2
=A2×
2 p *

1
0
2
3
Area A2=Cc×A0
Where
Cc:contraction coefficient
Flow coefficient Cf
Q = Cf × A0 ×
2 p
where Δp=P1-P3

Cf = f(Reynolds number;geometry)
=0.6~1.0
P0
Valve geometry
P1
d
Q
Q = Cf ×πd ×
Cf = 0.6~0.64

2 P0  P1 

Theory of Momentum (Principle of impulse)


I = m V(momentum)


F =
I
t

=  ( mv )
t
=
m
t

v+ m

v
t
F
A1
F1
Q
1
F2
F
1
CV
F2
2
2
Q
F1
A2
(Vector)

Steady flow
position
position

( vt
m
1:  t
2:  m
t
= 0)
=ρ1Q1
=ρ2Q2


F = ρ1Q1 v1
v2
F = - ρ2 Q2
1


2
Flow force:



Fstr = F1 + F2




F = - Fstr = - F1 - F2
Ex: assume incompressible (ρ=const)
ρ1Q1=ρ2Q2 = ρQ




F = -ρQ( v1 + v2)
 QV
1
1
 QV
1
2

unsteady part : m
v
t
CV
2
2
Assume incompressible   = const
Thus Q1= Q2 = Q



v1 = - v2 = v (A:const)


F=
v
×m(∵
t


v2= - v1 ∴steady part=0)

=ρ A ×
v
t
pressure drop:P1-P2 =
F
A
=
 dQ
× dt(Q
A
F =A(P1-P2)
Where

:hydraulic inductance
A
= v‧A)
Flow force on the directional control valve
(a)
Recall Fstr= F1- F2 = Fi - Fo (scalar)
Fax= -Fstr = Fo- Fi


Fax= m vo cosε0 -


m vi cosεi - ρ
Io
dQ
dt
εi
ε2 εo
ε1
Ii
Io Ii
Fax
Io Ii

A
2

Fstr
1




m vo = ρv2 × Q
m vi = ρv1 × Q
εo= ε2= 90o
 ε = ε + 180o
i
1
Fax=0 + ρv1Qcosε1 - ρ
εi
(b)
ε2


dQ
dt
Io
Ii
εo, ε1


Fax= m vo cosε0 - m vi cosεi + ρ




m vo =ρv1Q
m vi =ρv2Q
ε0=ε1
εE=ε2+1800=2700
Fax=ρv1Qcosε1+ ρ
dQ
dt
dQ
dt
HW #3-a
(a)
(2)
Fax
 dk
(1)
Po , Q

X
Xk
Shown above is a directional control valve
Given : Q = 40 l/min
=70 0
 oil  0.85 g 3
cm

dk  8mm
Xk = 0.5mm
cf =0.8
問題: (1) 反應力Fax中之unsteady part 是否隨流動方向不
同
而改變其大小及方向?(此處流動方向指圖示
(1)及(2))
(2) 反應力Fax中之steady part 是否與流動方向有關?
試寫其支持力(Fax ) 之方程式。
(3) 請一所給的數據,計算出支持力(Fax)之值。
HW#3-b
(b ) Laminar flow through eccentric clearance
P1
P2
D
e
d

D  2r  d
d=2cm ,  =50 cst ,  =0.85 cm
l= 1cm , p  200bar , r  0.002cm
g
3
Questions :
(1) Qe=0 = ? ( l / min)
(2) Qe=r = ? ( l / min)
Case 1:small orifice area ( P ~const)
Q= Cf × A ×
2 P
v=

Q
A
= Cf ×
2 P

Where A=orifice area
=πd x
x
d
by small orifice area Δp~const
Fstr
thus Q ~ X
Fstr=ρv Qcosε (only steady part)
=ρv(vA)cosε
=2Cf2 ×πd x ×Δpcosε
 Cs×X
~
Case 2:large orifice area (Q~const)
2
Fstr= Q cosε
Fstr
dX
Thus Fstr~
linear
Pmax=const
Q
Q1 Q2 3
x
Small A
Large A
Q3>Q2>Q1
P3max
P2max
P1max
1
X
Fstr
x
Pmax
Q
P3max>P2max > P3max
x
Viscosity of fluid
U
F
y
h
U
du
(

~
)
 =
Shear stress
h
dy
where  : dynamic viscosity
cf.    : kinematic viscosity

Unit :
g
1Poise=1 cm  s =0.1
N s
m2
1cp=10-2 Poise =10-3N  s m
cm 2
1 stoke =1 sec
2
1 cst=1 mm sec
η(or ν)= f(T,P)
Flow in Pipes
Eqs. derived from viscous flow condition
(1)laminar flow NR<2000
(2)turbulent flow NR>4000
only empirical Eqs.
Reynolds number NR(dimensionless)
NR = VD H
2

where V:velocity of fluid
DH:hydraulic diameter
ν:kinematic viscosity
Hydraulic Diameter DH = 4 A
U
where A:Area of pipe
U:circumference of pipe
For pipes:
DH=
d
4
2
d
2
= d (diameter
of pipe)
For narrow clearance
h
Q
b
DH=
4bh
≈ 2h
2 b+h
(if h << b)
Conclusion:
Design in hydraulics  Laminar flow
§ Hagen-Poiseuille formula
V
y
r
P1 
P2
(laminar flow in a pipe)
τ×2πy  =(P1-P2)πy2
τ=η dydv  dydv = P  P

1
v
y r
2
×
y
2
= P  P  ydy
 dv
2
P P
v=
(r2-y2)
1
2
y y
0
1
2
4
for y =0 then
y r
Q=  vdA =
y 0
y r
r 4
 v2ydy = 8 (P1-P2)
y 0
Vmax
Laminar flow through the clearance
y
V
h
Q
Vmax
V=
P1  P2
2
2
8 (h -4y )
Vmax=
yh
Q =2 
P1  P2
8
Q=
yh
2 
y 0
xdA
bh 3
12
h2
2 
=2  xbdy
y 0
(P1-P2)
b
Laminar flow through eccentric clearance
D
P1
P2
Q

dr 3 1  1.5 e 
Q=
  r 

12 
3
e
d
D  2r  d


 (P -P )
1 2
 

Where η:dynamic viscosity (e.g. Poise;N 2S )
m
When e=Δr, which implies max. eccentricity
Qe= r  2.5 Qe=0
Flow through resistance and orifice
(a) Resistance

2r
P1
P2
r 4
Q= 8 Δp =k1
Q~Δp ~
1

Δp
1

(b) Orifice
P1
P2
Q=CfA 2

=k2 p
Q ~ p
Thus
p
Q
orifice
Resistance
Δp
Pressure losses through pipes
Darcy-Weisbach formula:
Pf = λ(
or

hf =λ( d

d
v 2
)
2
v2
)
2g
where
Pf:pressure loss
hf :head loss
 :length of pipe
d :internal diameter of pipe
λ :friction factor(derived experimentally)
Example:Laminar pipe flow
r 4
Q=
Δp
8
Q=A×v=πr2v
Thus Δp =P1-P2 = Pf =
λ=
64
d
V
=

64
Re
8 
v
r2
2

λ v
d
2
(valid only if Re<2000)
For turbulent flow:
Blasius formula:
λ=
0.3164
Re
0.25
(for pipes with smooth inside surface)
(3000<Re<105)
k-values for fluid through sudden expansion,
contraction, pipe fitting, valves and bends
ΔPff = k ×
V 2
(for turbulent flow)
2
2
or hff = k( V2g )
where ΔPff:pressure loss
hff:head loss
Sudden enlargement:
k =(1Q
D1
D1
2
D2
2
)2
D2
Sudden reduction:
D2 Q
k = 0.5(1D1
k-values for pipe fitting, valves, and bends are
determined empirically
D1
2
D2
2
)
Circuit Calculation
k1
d1
2
1
1
k3
k2
3
(P1+
=
 i
i
2
V1 2
V2 2 +ρgζ )=ΔP
+ρgζ
)-(P
+
1
2
2
f
2
2
2
2
 i Vi
di 2
+  ki
i
Vi
2
HW#4-a
HW#4-b
EX: 泵油之空穴(Cavitation of oil pump)
A B
P1 :泵之入口壓力
P2 :泵內之最低壓力
Pa :大氣壓力
Pg :空氣分離壓力
Pa
P1 P2
(1) From Bernoulli’s Eq.
he (head loss)
2
2
P
P1
v
v
 1  a  H1    1
r
2g
r
2g
2
( r  g )
2
P1 v1
P
v
P

 2  2  he  2  h
r
2g
r
2g
r
(2)
Pa
r
P
Hz  z
r
Pg
Hg 
r
Ha 
Pa
P
 H1  he  2  h
r
r
 H a  H1  he  H 2  h
(3) Define (Net Positive Suction Head)
NPSH  h  H a  H1  he  H z
(4) No cavitation
 P2  Pg  H 2  H g
 h  H a  H1  he  H g
(A)
問題:
(1)式(A)中,有那些(Ha? , H1? , he , Hg ?)會影響泵
是否產生 cavitation?
(2)若欲避免產生cavitation,則影響泵是否產生cavitation之
Heads 應如何改變(例如:變大或減小等)
(3)如何在設計油泵系統時,達到(2)中所述之改變?