MECH300H Introduction to Finite Element Methods Lecture 7

Download Report

Transcript MECH300H Introduction to Finite Element Methods Lecture 7

MECH300H Introduction to Finite Element Methods Lecture 7

Finite Element Analysis of 2-D Problems

2-D Discretization

Common 2-D elements:

2-D Model Problem with Scalar Function - Heat Conduction

Governing Equation

 

x

 

T

(

x

, 

x y

)   

y

   

T

(

x

, 

y y

)   

Q

(

x

,

y

)  0 •

Boundary Conditions

Dirichlet BC:

in

W Natural BC: Mixed BC:

Weak Formulation of 2-D Model Problem

Weighted - Integral of 2-D Problem -----

W 

w

   

x

   

x

  

y

    

y

   

Q x y dA

 0 •

Weak Form from Integration-by-Parts -----

0  W    

w

x

  

T

x

  

w

y

   

T

y

    

dxdy

 W   

x

w

 

T

x

dxdy

 W   

y

 

w

 

T

y

 

dxdy

Weak Formulation of 2-D Model Problem

Green-Gauss Theorem -----

W   

x

 

w

T

x

W   

y

  

w

T

y

dxdy

 

dxdy

  G  G   

w

T

x

  

w

T

y

n ds x

 

n ds y

where n x

n

n and n y which is normal to the boundary x i

n y are the components of a unit vector, j

 

i

cos

 

j

sin

G 

.

Weak Formulation of 2-D Model Problem

Weak Form of 2-D Model Problem -----

0  W    

w

x

  

T

x

  

w

y

   

T

y

    G 

w

    

T

x

n x

    

T

y

 

n y

 

ds

 

dxdy

EBC: Specify T(x,y) on

G   

T

x

 

n

      

T

x

i

    

T

y

 

j

outward flux on the boundary

G 

T

y

     

n i x

  

n j y

 G

at the segment ds.

FEM Implementation of 2-D Heat Conduction – Shape Functions

Step 1: Discretization – linear triangular element

T 1

T

T

1  1 

T

2  2 

T

3  3 T 3 T 2 

i

i

Interpolation properties   1 at

ith

node 0 at other nodes  1   1

x y

  1    1 1

x

1

x

2

x

3 Derivation of linear triangular shape functions: Let  1 

c

0 

c

1

x

c

2

y c

0

c

0

c

0  

c x

1 1 

c x

1 3 

c y

2 1  2 

c y

2 3  1   0 0

c

0 1

c c

1 2     1 1

x

1

x

2

x

3

y y

2 1    1

y

3     1

x

2

A e y

   

y

2

x

3 3  

y

3 

x

2 2    Same  2   1

x

2

A e y

   

y

3

x

1 

y

1 

x

3 3  3   1

x

2

A e y

   2 

y

1

x

2 

y

2 

x

1

y

1

y

2    1

y

3 1  

FEM Implementation of 2-D Heat Conduction – Shape Functions

linear triangular element – area coordinates

T 1 T 3 A 2 A 1 A 3  1   1

x

2

A e y

  

x y

2 3

y

2

x

3 

x y

3 2 

y

3 

x

2 

A

1

A e

T 2  2   1

x

2

A e y

   

y

3

x

1 

y

1 

x

3 

A

2

A e

1

 3   1

x

2

A e y

  

x y

1

y x

2 2 1 

x y

2 1 

y

2 

x

1 

3

2

A

3

A e

Interpolation Function - Requirements

Interpolation condition

Take a unit value at node i, and is zero at all other nodes

Local support condition

• i

is zero at an edge that doesn’t contain node i.

Interelement compatibility condition

Satisfies continuity condition between adjacent elements over any element boundary that includes node i

Completeness condition

The interpolation is able to represent exactly any displacement field which is polynomial in x and y with the order of the interpolation function

Formulation of 2-D 4-Node Rectangular Element –

Let

u

Bi-linear Element

 

u

1 1  

u

2 2  

u

3 3  

u

4 4 

1

3

    

a

b

a

     

b

  

2

 

a

  

4

   

a

  

b

b

  Note: The local node numbers should be arranged in a counter-clockwise sense. Otherwise, the area Of the element would be negative and the stiffness matrix can not be formed.

1

2

3

4

FEM Implementation of 2-D Heat Conduction – Element Equation

Weak Form of 2-D Model Problem -----

0  W

e

    

w

x

   

T

x

   

w

y

   

T

y

     

dxdy

  G

e wq ds n

Assume approximation:

) 

n

j

 1

u j

j

and let w(x,y)=

i (x,y) as before, then

0  W 

e

    

x i

  

x

  

j n

  1

T j

j

      

y i

  

y

  

j n

  1

T j

j

    

i

    G  

i

where

K ij j n

  1

K T ij j

  W

e

i Qdxdy

e

G  

i q ds n

  W

e

    

i

 

j x

   

i

 

j y

 

dxdy

)

FEM Implementation of 2-D Heat Conduction – Element Equation

j n

  1

j

  W

e

i Qdxdy

  G

e

i

  4

A e

   

l

23

l

23

l

23 2  

l

31

l

12

l

23 

l

31

l

31 2

l

31 

l

12

l

23

l

31  

l

12

l

12 2

l

12     

Q q

   

Q Q

2 3

q q

2 3

Q i q i

 W 

e

i Qdxdy

  G

e

i q ds n

Assembly of Stiffness Matrices

U 1

F i

u 1 ( 1 ) , U 2

 W  

u 2 ( 1 )

u 1 ( 2 ) , U 3

  G   

i q n

u 3 ( 1 )

 

ds

u ( 4 2 )

j n e

  1

, U 4

K u ij j

u 2 ( 2 ) , U 5

u ( 3 2 )

Imposing Boundary Conditions

1 1 1 1 The meaning of

q i

: 1 3 3 2

q

1 (1)   G 1

q n

(1)  1 (1)

ds

 

h

(1) 12

q n

(1)  1 (1)

ds

h

(1) 23 

q n

(1)  1 (1)

ds

h

(1) 31 

q n

(1)  1 (1)

ds

h

(1) 12 

q n

(1)  1 (1)

ds

h

(1) 31 

q n

(1)  1 (1)

ds

2 3 3

q

2 (1)   G 1

q n

(1)  2 (1)

ds

 

h

(1) 12

q n

(1)  2 (1)

ds

h

(1) 23 

q n

(1)  2 (1)

ds

 

h

(1) 31

q n

(1)  2 (1)

ds

h

(1) 12 

q n

(1)  2 (1)

ds

 

h

(1) 23

q n

(1)  2 (1)

ds

1 2 2

q

3 (1)   G 1

q n

(1)  3 (1)

ds

 

h

(1) 12

q n

(1)  3 (1)

ds

h

(1) 23 

q n

(1)  3 (1)

ds

 

h

(1) 31

q n

(1)  3 (1)

ds

h

(1) 23 

q n

(1)  3 (1)

ds

 

h

(1) 31

q n

(1)  3 (1)

ds

Consider

Imposing Boundary Conditions

q

2 

q

2 (1) 

q

1 (2)

q

(1) 2  

h

(1) 12

q

(1)

n

 2 (1)

ds

h

(1) 23 

q

(1)

n

 2 (1)

ds q

3 

q

3 (1) 

q

4 (2)

q

1 (2)  

h

( 2) 12

q

(2)

n

 1 (2)

ds

 

h

( 2) 41

q

(2)

n

 1 (2)

ds q

3 (1) 

h

(1) 23 

q n

(1)  3 (1)

ds

h

(1) 31 

q n

(1)  3 (1)

ds q

(2) 4  

h

( 2) 34

q

(2)

n

 4 (2)

ds

 

h

( 2) 41

q

(2)

n

 4 (2)

ds

Equilibrium of flux:

q n

(1)

h

(1) 23  

q n

(2)

h

( 2 ) 41 FEM implementation: 

h

(1) 23

q n

(1)  2 (1)

ds q

2   

h

( 2) 41

q n

(2)  1 (2)

ds

; 

h

(1) 23

q n

(1)  3 (1)

ds

 

h

(1) 12

q

(1)

n

 2 (1)

ds

 

h

( 2) 12

q n

(2)  1 (2)

ds q

3   

h

( 2) 41

q n

(2)  4 (2)

ds

 

h

(1) 31

q

(1)

n

 3 (1)

ds

 

h

( 2) 34

q n

(2)  4 (2)

ds

Example:

q n

 0

Calculating the q Vector

T

 293

K q n

 1

2-D Steady-State Heat Conduction - Example

A D AB and BC: CD: convection

q n

 0

h

 50

W m

2 

o C

DA:

T

 180

o C T

  25

o C

0.6 m y B 0.4 m C x