An Example. The question Data Analyses

Download Report

Transcript An Example. The question Data Analyses

An Example.
The question
Data
Analyses
Conclusions
Monthly mean air temperature at Recife 1953-1962
The question:
What is the relationship between temperatures in Recife and
El Nino?
Objectives
- to layout analyses
- to explore the data for surprises
- predicted values
- signal + noise?
- ...
Finding the data.
Google with various key words:
temperature, Recife, ...
"Eventually lead" to:
cdiac.ornl.gov/ftp/ndp041
Carbon dioxide information analysis center!
Had to discover Recife Curado station id - 3068290000
Years 1949-1988
Searched an inappropriate ste for a long time
(Looked at Brasil sites too, but that didn't turn up the data)
The web data. monthly
notice -9999
replace by NA
file: recifecurado
30682900001941 274 279 268 267 260 250 246 245 256 260 262 266
30682900001942 273 268 270 270 256 247 236 233 252 260 270 265
30682900001943 270 270 273 261 253 245 236 238 247 260 264 268
30682900001944 269 272 275 263 254 247 239 232 241 256 267 273
30682900001945 278 268 278 271 256 240 236 243 251 258 268 267
30682900001946 268 277 271 259 258 247 247 247 249 257 261 266
30682900001947 269 270 268-9999 253 246 244 245 249 262 268-9999
30682900001948 273 271 270 269 255 249 243 240 248-9999 264 270
30682900001949 272 274 278 266 252 246 240 236 250 261 265 271
30682900001950 273 280 269 251 248 243 235 234 248 258 264-9999
30682900001951 269 267 275 265 254 238 233 238 247 259 263-9999
30682900001952 272 278 267 262 252 245 240 238 253 256 263 268
How to handle missing values? Interpolate? Model? ...?
junk<-scan("recifecurado")
junk1<-matrix(junk,ncol=48)
junk2<-junk1[2:13,]
series<-c(junk2)/10
# years in first row
# for degrees centigrade
length(series[is.na(series)]) #17 - need to understand missingness
Interpolation
series1<-series
for(i in 2:(length(series)-1)){if(is.na(series[i]))series1[i]<.5*series[i-1] +.5*series[i+1]}
plot(xaxis,series1,type="l",xlab="year",ylab="mean temp (degrees C)",las=1)
title("Mean monthly temperatures 1949-88 Recife Curado")
abline(h=mean(series1))
There is seasonality and variability
Restricted range in mid-sixties - nonconstant mean level?
ylim<-range(series1)
par(mfrow=c(2,1))
plot(lowess(xaxis,series1),type="l",ylim=ylim,xlab="year",ylab=
"degrees C",main="Smoothed Recife series")
abline(h=mean(series1))
junk20<-lowess(xaxis,series1)
plot(xaxis,series1-junk20$y,type="l",xlab="year",ylab="degrees
C",main="Residuals")
abline(h=mean(series1-junk20$y))
par(mfrow=c(1,1))
acf(series1,las=1,xlab="lag(mo)",ylab="",main="autocorrelation
recife temperatures",lag.max=50,ylim=c(-1,1))
More confirmation of period 12
Note that nearby values are highly correlated
REMEMBER the interpretation of the error lines
spectrum(series1,xlab="frequency (cycles/month)",las=1)
Note peaks at frequency 1/12 and harmonics
Further confirmation of period 12
Note log scale for y-axis
Note vertical line in upper right
Gives uncertainty
What is the shape of the seasonal?
junk4<-matrix(series1,nrow=12)
junk5<-apply(junk4,1,mean)
plot(junk5,type="l",las=1)
abline(h=mean(junk5))
Cooler in July-Aug
Southern Hemisphere
Uncertainty?
Cooler in July-August. Southern hemisphere
Part of a longer cycle? El Nino explanatory?
After "removing" trend middle has been pulled up
Need uncertainties
Back to original data
Remove seasonal
series2<-series1
for(i in 1:48){
for(j in 1:12){
series2[(i-1)*12+j]<-series1[(i-1)*12+j]-junk5[j]
}
}
par(mfrow=c(2,1))
plot(xaxis,series2,type="l",xlab="year",ylab="residual",main="Series after
removing seasonal",las=1)
abline(h=0)
ylim<-range(series2)
plot(xaxis,series1mean(series1),type="l",xlab="year",ylab="degreesC",main="Mean removed
series",las=1,ylim=ylim)
abline(h=mean(series1-mean(series1)))
original variance 1.342 adjusted .248
par(mfrow=c(2,1))
acf(series2,lag.max=50,las=1,xlab="lag (mo)",main="Ajusted by removing monthly
means",las=1)
acf(diff(series1,lag=12),lag.max=50,xlab="lag (mo)",main="Order 12 differenced
series")
Frequency domain analysis.
par(mfrow=c(2,1))
junk9<-spec.pgram(series1,taper=0,detrend=F,demean=F,spans=5,plot=F)
ylim<-range(junk9$spec)
junk9<-spec.pgram(series1,taper=0,detrend=F,demean=F,spans=5,xlab="frequency
(cycles/mo)",las=1,main="Original series")
junk10<spec.pgram(series2,taper=0,detrend=F,demean=F,spans=5,ylim=ylim,main="Mont
hly means removed",las=1)
Work remains on seasonal
Residual "not" white noise
Time domain
distributions
Parametric model. SARIMA ?
Thinking about prediction, consider
Yt = αYt-1 + βYt-12 + Nt
with some ARMA for Nt
Check seasonal residuals for normality
Hope to end up with white noise
Junk<arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12))
Call:
arima(x = series1, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 1),
period = 12))
Coefficients:
ar1
ma1
sar1
sma1 intercept
0.7604 -0.3344 0.9990 -0.9201 25.6117
s.e. 0.0610 0.0968 0.0007 0.0220
0.6100
sigma^2 estimated as 0.1771: log likelihood = -337.48, aic = 686.97
tsdiag(Junk,gof.lag=25)
Junk<-arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12))
postscript(file="recifeplots1a.ps",paper="letter",hor=T)
Junk2<-predict(Junk,n.ahead=24)
Junk3<-c(series1,Junk2$pred)
Junk3a<-c(rep(0,576),2*Junk2$se)
Junk3b<-c(rep(0,576),-2*Junk2$se)
Junk4a<-Junk3+Junk3a;Junk4b<-Junk3+Junk3b
ylim<-range(Junk4a,Junk4b)
par(mfrow=c(1,1))
xaxis1<-1941+(1:length(Junk3)/12)
plot(xaxis1[xaxis1>1983],Junk4a[xaxis1>1983],type="l",las=1,ylim=ylim,col="re
d",xlab="year",ylab="degrees C",main="Data + predictions")
lines(xaxis1[xaxis1>1983],Junk4b[xaxis1>1983],col="red")
lines(xaxis1[xaxis1>1983],Junk3[xaxis1>1983],col="blue")
lines(xaxis[xaxis>1983],series1[xaxis>1983])
Two series
Bivariate case {Xt, Yt} - jointly distributed
Linear time invariant / transfer function model
Yt  k ht k X k  N t
nonparametric/parametric approaches
Southern Oscillation Index
El Niño: global coupled ocean-atmosphere phenomenon.
The Pacific ocean signatures, El Niño and La Niña are
important temperature fluctuations in surface waters of the
tropical Eastern Pacific Ocean
Southern Oscillation reflects monthly or seasonal fluctuations
in the air pressure difference between Tahiti and Darwin
www.cpc.ncep.noaa.gov/data/soi
junk<-scan("recifecurado")
junk1<-matrix(junk,ncol=48)
junk6<-junk1[1,]
junk1<-junk1[,junk6>1950]
junk2<-junk1[2:13,]
series<-c(junk2)/10
length(series[is.na(series)]) #13
xaxis<-1951+(1:length(series)/12)
series1<-series
junk4<-matrix(series1,nrow=12)
junk5<-apply(junk4,1,mean)
for(i in 2:(length(series)-1)){if(is.na(series[i]))series1[i]<-.5*series[i-1]+.5*series[i+1]}
junk4<-matrix(series1,nrow=12)
junk5<-apply(junk4,1,mean)
series2<-series1
for(i in 1:38){
for(j in 1:12){
series2[(i-1)*12+j]<-series1[(i-1)*12+j]-junk5[j]}}
kunk<-scan("SOIa.dat")
kunk1<-matrix(kunk,ncol=58); kunk6<-kunk1[1,]
kunk1<-kunk1[,kunk6<1989]
kunk2<-kunk1[2:13,]
teries<-c(kunk2)
length(teries[is.na(teries)]) #0
teries1<-teries; teries2<-teries1
postscript(file="recifeplots3.ps",paper="letter",hor=T)
par(mfrow=c(2,1))
plot(xaxis,series2,type="l",las=1,xlab="year",ylab="",main="Seasonall
y adjusted Recife temps")
plot(xaxis,teries2,type="l",las=1,xlab="year",ylab="",main="Southern
Oscillation Index")
postscript(file="recifeplots2.ps
",paper="letter",hor=F)
par(mfrow=c(1,1))
acf(cbind(series2,teries2))
junk10<-cbind(series2,teries2)
junk11<spec.pgram(junk10,plot=F,taper=0,detrend=F,demean=F,spans=11)
par(mfcol=c(2,2))
plot(junk11$freq,10**(.1*junk11$spec[,2]),log="y",main="SOIspectrum
", xlab="frequency", ylab="", las=1,type="l")
plot(junk11$freq,junk11$coh,main="Coherence",xlab="frequency",ylab
="",las=1,ylim=c(0,1),type="l")
junkh<-1-(1-.95)**(1/(.5*junk11$df-1))
abline(h=junkh)
plot(junk11$freq,10**(.1*junk11$spec[,1]),log="y",main="Seasonally
corrected Recife spectrum",xlab="frequency", ylab="",las=1, type="l")
SARIMAX
Yt = αYt-1 + βYt-12 + γXt + Nt
ar1
ma1
sar1
sma1 intercept teries1
0.7885 -0.3717 0.9996 -0.9474 25.5572 -0.0255
s.e. 0.0610 0.1014 0.0006 0.0321
0.6403 0.0149
sigma^2 estimated as 0.1792: log likelihood = -275.68, aic
= 565.35
Junk1<arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12),
xreg=teries1)
The answer to the question:
There is a hint of a linear time invariant
relationship.