The Origin of CP Violation in the Standard Model Topical Lectures

Download Report

Transcript The Origin of CP Violation in the Standard Model Topical Lectures

The Origin of CP Violation
in the Standard Model
Topical Lectures
July 1-2, 2004
Marcel Merk
July 1-2, 2004
1
Contents
•
•
•
•
•
•
Introduction: symmetry and non-observables
CPT Invariance
CP Violation in the Standard Model Lagrangian
Re-phasing independent CP Violation quantities
The Fermion masses
The matter anti-matter asymmetry
Theory Oriented!
July 1-2, 2004
2
Literature
References:
•
C.Jarlskog, “Introduction to CP Violation”,
Advanced Series on Directions in High Energy Physics – Vol 3:
“CP Violation’, 1998, p3.
•
Y.Nir, “CP Violation In and Beyond the Standard Model”,
Lectures given at the XXVII SLAC Summer Institute, hep-ph/9911321.
•
Branco, Lavoura, Silva: “CP Violation”,
International series of monographs on physics,
Oxford univ. press, 1999.
•
Bigi and Sanda: “CP Violation”,
Cambridge monographs on particle physics, nuclear physics and cosmology,
Cambridge univ. press, 2000.
•
T.D. Lee, “Particle Physics and Introduction to Field Theory”,
Contemporary Concepts in Physics Volume 1,
Revised and Updated First Edition, Harwood Academic Publishers, 1990.
•
C. Quigg, “Gauge Theories of the Strong, Weak and Electromagnetic Interactions”,
Frontiers in Physics, Benjamin-Cummings, 1983.
•
H. Fritsch and Z. Xing, “Mass and Flavour Mixing Schemes of Quarks and Leptons”, hep-ph/9912358.
•
Mark Trodden, “Electroweak Baryogenesis”, hep-ph/9803479.
July 1-2, 2004
3
Introduction: Symmetry and non-Observables
T.D.Lee:
“The root to all symmetry principles lies in the assumption that it is
impossible to observe certain basic quantities; the non-observables”
There are four main types of symmetry:
• Permutation symmetry:
Bose-Einstein and Fermi-Dirac Statistics
• Continuous space-time symmetries:
translation, rotation, acceleration,…
• Discrete symmetries:
space inversion, time inversion, charge inversion
• Unitary symmetries: gauge invariances:
U1(charge), SU2(isospin), SU3(color),..
 If a quantity is fundamentally non-observable it is related to an exact symmetry
 If a quantity could in principle be observed by an improved measurement;
the symmetry is said to be broken
Noether Theorem:
July 1-2, 2004
symmetry
conservation law
4
Symmetry and non-observables
Simple Example: Potential energy V between two particles:
Absolute position is a non-observable:
The interaction is independent on the
choice of 0.
r1
r2
Symmetry:
V is invariant under arbitrary
space translations:
r2  r2  d
r1  r1  d
0’
Consequently:

V  V r1  r2
July 1-2, 2004
d
0
Total momentum is conserved:


d
p1  p2
dt

 F1  F2


  1   2 V
 0
5
Symmetry and non-observables
Non-observables
Symmetry Transformations
Conservation Laws or Selection
Rules
Difference between identical
particles
Permutation
B.-E. or F.D. statistics
Absolute spatial position
Space translation
Absolute time
Time translation
t  t 
energy
Absolute spatial direction
Rotation
r  r
angular momentum
Absolute velocity
Lorentz transformation
Absolute right (or left)
Absolute sign of electric charge
r r
r  r
e  e
momentum
generators of the Lorentz group
parity
charge conjugation
Relative phase between states of
different charge Q
 e 
Relative phase between states of
different baryon number B
  eiN
Relative phase between states of
different lepton number L
  eiL
lepton number
 p
 p

U
 
 
n
n
isospin
Difference between different coherent mixture of p and n states
July 1-2, 2004
iQ
charge
baryon number
6
Parity Violation
Before 1956 physicists were convinced that the laws of nature
were left-right symmetric. Strange?
A “gedanken” experiment:
Consider two perfectly mirror symmetric cars:
Gas pedal
Gas pedal
driver
“L” and “R” are fully symmetric,
Each nut, bolt, molecule etc.
However the engine is a black box
“L”
driver
“R”
Person “L” gets in, starts, ….. 60 km/h
Person “R” gets in, starts, ….. What happens?
What happens in case the ignition mechanism uses, say, Co60 b decay?
July 1-2, 2004
7
CPT Invariance
Local Field theories always respect:
• Lorentz Invariance
(Lüders, Pauli, Schwinger)
• Symmetry under CPT operation (an electron = a positron travelling back in time)
=> Consequence: mass of particle = mass of anti-particle:
M  p   p H p  p  CPT   CPT  H  CPT 
†
 p  CPT  H  CPT 
1

p  p H
 CPT 

p  M  p
1
p

(anti-unitarity)
=> Similarly the total decay-rate of a particle is equal to that of the anti-particle
• Question 1:
Answer 1 + 2: A KL ≠ an anti-KS particle!
The mass difference between KL and KS: m = 3.5 x 10-6 eV => CPT violation?
• Question 2:
How come the lifetime of KS = 0.089 ns while the lifetime of the KL = 51.7 ns?
• Question 3:
BaBar measures decay rate B-> J/ KS and Bbar-> J/ KS. Clearly not the same: how can it be?
Answer 3:
Partial decay rate ≠ total decay rate! However, the sum over all partial rates (>200 or so)
is the same for B and Bbar.
(Amazing! – at least to me)
July 1-2, 2004
8
CP in the Standard Model Lagrangian
(The origin of the CKM-matrix)
LSM contains:
LKinetic : fermion fields
LHiggs : the Higgs potential
LYukawa : the Higgs – Fermion interactions
Plan:
• Look at symmetry aspects of the Lagrangian
• How is CP violation implemented?
→ Several “miracles” happen in symmetry
breaking
Standard Model gauge symmetry:
GSM  SU (3)C  SU (2) L U (1)Y
 SU (3)C U (1) EM
Note Immediately: The weak part is explicitly parity violating
Outline:
• Lorentz structure of the Lagrangian
• Introduce the fermion fields in the SM
• LKinetic : local gauge invariance : fermions ↔ bosons
• LHiggs : spontaneous symmetry breaking
• LYukawa : the origin of fermion masses
•
July 1-2, 2004
VCKM
: CP violation
9
Lagrangian Density
Local field theories work with Lagrangian densities:
L  x , t   L  j  x , t  ,    j  x , t  
with  j  x, t  , j  1, 2,..., N the fields taken at
x, t
The fundamental quantity, when discussing symmetries is the Action:
A   d 4 x L  x, t 
If the action is (is not) invariant under a symmetry operation then
the symmetry in question is a good (broken) one
=> Unitarity of the interaction requires the Lagrangian to be Hermitian
July 1-2, 2004
10
Structure of a Lagrangian
Lorentz structure: a Lagrangian in field theory can be built using combinations of:
S: Scalar fields
: 1
P: Pseudoscalar fields
: 5
V: Vector fields
: 
A: Axial vector fields
: 5
T: Tensor fields
: sn
Example:
Consider a spin-1/2 (Dirac) particle (“nucleon”)
interacting with a spin-0 (Scalar) object (“meson”)
Dirac field  :
(i     m)  0
Scalar field :
(i     m2 )  0
L  x , t   i  x , t       x , t   m  x , t   x , t 
2
1 

   x , t      x , t   V   x , t  
2
   x , t   a  ib 5    x , t    x , t 
July 1-2, 2004
Nucleon field
Meson potential
Nucleon – meson interaction
Exercise:
What are the symmetries of this theory under C, P, CP ? Can a and b be any complex numbers?
Violates P, conserves C, violates CP
Note: the interaction term contains scalar and pseudoscalar parts
a and b must be real from Hermeticity
11
Transformation Properties
P
C
( x, t )
 ( x , t )
( x, t )
 † ( x, t )
Scalar Field :
( x, t )
 ( x, t )


Dirac Field :
 ( x, t )
  0 (  x , t )
V† ( x , t )
Axial Field :
A ( x , t )   A ( x , t )
A† ( x , t )

Q 0  Q0
, Q k  Qk
i 2 0 T ( x , t )
V  ( x, t )
Vector Field : V ( x , t )
Feynman Metric:
(Ignoring arbitrary phases)
Transformation properties of Dirac spinor bilinears:
P
C
CP
T
CPT
S:
 1 2

 1 2
 2 1
 2 1
 1 2
 2 1
P:
 1 5 2

 1 5 2
 2 5 1
 2 5 1
 1 5 2
 2 5 1
V:
 1  2

 1  2
 2  1
 2  1
 1  2
 2  1
 2   5 1
 2   5 1
 1   5 2
 2  5 1
 2s n 1
 1s n 2
 2s n 1
 2s n 1
c→c*
c→c*
A :  1   5 2
  1   5 2
T :  1s n 2

July 1-2, 2004
 1s n 2
12
The Standard Model Lagrangian
LSM  LKinetic  LHiggs  LYukawa
• LKinetic : •Introduce the massless fermion fields
•Require local gauge invariance => gives rise to existence of gauge bosons
=> CP Conserving
• LHiggs : •Introduce Higgs potential with <> ≠ 0
GSM  SU (3)C  SU (2) L  U (1)Y  SU (3)C  U (1)Q
•Spontaneous symmetry breaking
The W+, W-,Z0 bosons acquire a mass
=> CP Conserving
• LYukawa : •Ad hoc interactions between Higgs field & fermions
=> CP violating with a single phase
• LYukawa → Lmass :
• fermion weak eigenstates:
-- mass matrix is (3x3) non-diagonal
• fermion mass eigenstates:
-- mass matrix is (3x3) diagonal
• LKinetic
July 1-2, 2004
in mass eigenstates: CKM – matrix
=> CP-violating
=> CP-conserving!
=> CP violating with a single phase
13
Fields: Notation
Fermions:
 1  5 
L  

 2 
 u I (3, 2,1 6) 
 I

d
(3,
2,1
6)

L i
•
I
uRi
(3,1, 2 3)
•
Leptons:
n I (1, 2,  1 2) 


I
l
(1,1,

1)

L i
•
I
l
• Ri (1,1, 1)
Scalar field:
July 1-2, 2004
with  = QL, uR, dR, LL, lR, nR
Interaction rep.
Quarks:
Under SU2:
Left handed doublets
Right hander singlets
 1  5 
; R  

 2 
Q = T3 + Y
•
  
 (1, 2, 1 2)   0 
 

I
QLi
(3, 2,1 6)
SU(3)C SU(2)L
Leftgeneration
handed index
•

•
Y
d RiI (3,1, 1 3)
LILi (1, 2,  1 2)
n RiI
Note:
Interaction representation: standard model
interaction is independent of generation
number
14
Fields: Notation
Q = T3 + Y
Explicitly:
• The left handed quark doublet :
I
I
I
I
I
I
I
I
I






u
,
u
,
u
c
,
c
,
c
t
,
t
,
t
r
g
b
r
g
b
r
g b
I
QLi (3, 2,1 6)   I I I  ,  I I I  ,  I I I 
 d , d , d   s , s , s  b ,b ,b 
 r g b L  r g b L  r g b L
T3   1
2
T3   1
2
(Y  1 6)
• Similarly for the quark singlets:
uRiI (3,1, 2 3) 
d RI i (3,1, 1 3) 
u , u , u  , c , c , c  , t , t , t 
 d , d , d  ,  s , s , s  , b , b , b 
• The left handed leptons:
I
r
I
r
I
r
I
r
I
r
I
r
R
I
r
I
r
I
r
I
r
I
r
R
I
r
R
I
r
I
r
I
r
I
r
 y  2 3
R
I
r
I
I
I


n



n
n

e
 
I
LLi (1, 2, 1 2)   I  ,   ,  I 
 e    I   
 L  L  L
• And similarly the (charged) singlets:
July 1-2, 2004
R
I
r
R
 y   1 3
T3   1 2
T3   1 2
lRiI (1,1, 1)  eRI ,  RI , RI
15
Intermezzo: Local Gauge Invariance in a single transparancy
Basic principle: The Lagrangian must be invariant under local gauge transformations
Example: massless Dirac Spinors in QED:
“global” U(1) gauge transformation:
“local” U(1) gauge transformation:
L  i      
  x     x   ei  x 
  x     x   ei  x   x 
  x   ei  x   x  ;   x   ei  x   x 
Is the Lagrangian invariant?
   x   ei  x    x   iei  x   x     x 
Then:
i     i   
=> Introduce the covariant derivative:
and demand that A transforms as:
Conclusion:
July 1-2, 2004
     x 
D     ieA
1
A  A   A     x 
e
Not
invariant!
Then it turns out that:
L  L  L
is invariant!
• Introduce charged fermion field (electron)
• Demand invariance under local gauge transformations (U(1))
• The price to pay is that a gauge field A must be introduced at the same time (the photon)
16
LSM  LKinetic  LHiggs  LYukawa
LKinetic :
:The Kinetic Part
Fermions + gauge bosons + interactions
Procedure: Introduce the Fermion fields and demand that the theory is local gauge invariant
Start with the Dirac Lagrangian:
Replace:
   D      ig s Ga La  igWb Tb  ig B  Y
Ga : 8 gluons
Wb : weak bosons: W1, W2, W3
B : hypercharge boson
Fields:
Generators:
July 1-2, 2004
L  i (    )
La : Gell-Mann matrices:
Tb : Pauli Matrices:
Y : Hypercharge:
½ la
½ b
(3x3)
(2x2)
SU(3)C
SU(2)L
U(1)Y
For the remainder we only consider Electroweak: SU(2)L x U(1)Y
17
LSM  LKinetic  LHiggs  LYukawa : The Kinetic Part


L kinetic : i (   )  i ( D   )
with   QLiI , uRiI , d RiI , LILi , lRiI
Exercise:
Show that this Lagrangian formally
violates both P and C
Show that this Lagrangian conserves CP
LKin = CP conserving
For example the term with QLiI becomes:
L kinetic (QLiI )  iQLiI   D  QLiI
 iQLiI   (  
i
i
i
g s Ga la  gWb b  g B  ) QLI i
2
2
6
and similarly for all other terms (uRiI,dRiI,LLiI,lRiI).
Writing out only the weak part for the quarks:
I
Weak
Lkinetic
(u, d ) LI
i
I

 u 
 i u, d  L      g W1 1  W2 2  W3 3    
2

  d L
g I
 iuLI     uLI  id LI     d LI 
uL W   d LI 
2
uLI
g
July 1-2, 2004
dL
I
W+
L=JW
g I
d L  W   uLI
2
W+ = (1/√2) (W1+ i W2)
W- = (1/√ 2) (W1 – i W2)
 ...
18
LSM  LKinetic  LHiggs  LYukawa :
The Higgs Potential
LHiggs  D † D   VHiggs
→Note LHiggs = CP conserving
2
1 2 †
†
VHiggs       l   
2
V()
Symmetry
V
Broken
Symmetry
2  0 :
   0
2  0 :

 0 

    v


2


v   2 l
~ 246 GeV
Spontaneous Symmetry Breaking: The Higgs field adopts a non-zero vacuum expectation value
Procedure:
    e   im  

0
0
0 


e


i

m

  

 


And rewrite the Lagrangian (tedious):
(The other 3 Higgs fields are “eaten” by the W, Z bosons)
July 1-2, 2004

Substitute:
v H0
e  
2
0
1. GSM :  SU (3)C  SU (2)L U (1)Y    SU (3)C U (1)EM 
2. The W+,W-,Z0 bosons acquire mass
3. The Higgs boson H appears
“The realization of the vacuum breaks the symmetry”
19
LSM  LKinetic  LHiggs  LYukawa
: The Yukawa Part
Since we have a Higgs field we can add (ad-hoc) interactions
between  and the fermions in a gauge invariant way.
doublets
The result is:

Yij  Li 
 LYukawa 
L must be Hermitian (unitary)
singlet

 
Y L  l
Rj

h.c.


 Yijd QLiI  d RjI
 Yiju QLiI  uRjI

 h.c.
l
ij
I
Li
I
Rj
 0 1 *

1 0 

To be manifestly invariant under SU(2)
With:
Yijd
July 1-2, 2004
, Yiju
, Yijl
  is 2  *  
are arbitrary complex matrices which
operate in family space (3x3)
=> Flavour physics!
20
LSM  LKinetic  LHiggs  LYukawa
: The Yukawa Part
Writing the first term explicitly:


 I

d
I
I
Yij (uL , d L )i  0  d Rj
 
 d I I
 Y11 uL , d L


 Y d cI , d I
 21 L L


 Y31d t LI , d LI





  






d
I
I
d
I
I
 0  Y12 uL , sL  0  Y13 u L , bL  0  
 
 
  
 d RI 



  



  I 


d
I
I
d
I
I
 0  Y22 cL , sL  0  Y13 cL , bL  0     sR 
 
 
     I 
bR 


 
  






d
I
I
d
I
I
 0  Y32 t L , sL  0  Y33 t L , bL  0  
 
 
  


















Question:
In what aspect is this Lagrangian similar to the example of the
nucleon-meson potential?
July 1-2, 2004
21
LSM  LKinetic  LHiggs  LYukawa


 LYukawa  Yij  Li   Rj
 h.c.
Formally, CP is violated if:

: The Yukawa Part

m det Y d Y d † , Y uY u †   0
In general LYukawa is CP violating
Exercise (intuitive proof)
Show that:
• The hermiticity of the Lagrangian implies that there
are terms in pairs of the form:
Yij Li Rj
 Yij* Rj † Li
• However a transformation under CP gives:
 Li Rj
  Rj † Li
and leaves the coefficients Yij and Yij* unchanged
July 1-2, 2004
CP is conserved in LYukawa
only if Yij = Yij*
22
LSM  LKinetic  LHiggs  LYukawa
: The Yukawa Part
There are 3 Yukawa matrices (in the case of massless neutrino’s):
Yijd
, Yiju
, Yijl
Each matrix is 3x3 complex:
• 27 real parameters
• 27 imaginary parameters (“phases”)
 many of the parameters are equivalent, since the physics described
by one set of couplings is the same as another
 It can be shown (see ref. [Nir]) that the independent parameters are:
• 12 real parameters
• 1 imaginary phase
This single phase is the source of all CP violation in the Standard Model
……Revisit later
July 1-2, 2004
23

S.S.B
LYukawa
LMass
: The Fermion Masses
Start with the Yukawa Lagrangian
 LYuk


 I

d
I
I
 Yij (uL , d L )i  0  d Rj
 
S .S .B. : e  0  
 Yiju ...  Yijl ...
vH
2
After which the following mass term emerges:
 LYuk 
 L Mass
 d LiI M ijd d RjI
 lLiI M ijl lRjI
with
v d
M 
Yij
2
d
ij
 uLiI M iju uRjI
 h.c.
v u
, M 
Yij
2
u
ij
v l
, M 
Yij
2
l
ij
LMass is CP violating in a similar way as LYuk
July 1-2, 2004
24
 LMass
S.S.B
LYukawa
: The Fermion Masses
Writing in an explicit form:





LMass   d , s , b  M d
I
I
I
L
 I
 d 
  sI  
 I
 b 
 R

u , c , t   M
I
I
I
L
uI 
u   c I  
 
  tI 
 R
 e ,  ,  M
 I
e 
l  I
 I
  
 R
f
f
I
I
I
L
V




V
 h.c.
The matrices M can always be diagonalised by unitary matrices
L and R such that:

 d I 
 I I I f† f
f
f
f†
f  I 
d
,
s
,
b
V
V
M
V
V
VLf M f VRf †  M diagona
L
L
R
R  s 

l

 bI 
 



Then the real fermion mass eigenstates are given by:
d Li  VLd   d LjI
d Ri  VRd   d RjI
uLi  VLu   uLjI
uRi  VRu   uRjI
lLi  VLl   lLjI
lRi  VRl   lRjI
ij
ij
ij
dLI , uLI , lLI
dL , uL , lL
July 1-2, 2004
ij
ij
ij
are the weak interaction eigenstates
are the mass eigenstates (“physical particles”)
25
LYukawa
 LMass
S.S.B
In terms of the mass eigenstates:
 L Mass 
 d , s, b 
L

 e,  , 
L
L Mass 
 md

ms



 me

m



: The Fermion Masses



mb 
d 
 
 s   u , c, t
b
 R
 e
 
     h.c.
m     R


L
 mu




mc



mt 
u 
 
c
t
 R
mu uu  mc cc  mt tt
 md dd
 ms ss  mbbb
 me ee  m 
= CP Conserving?
 m
In flavour space one can choose:
Weak basis: The gauge currents are diagonal in flavour space, but the flavour mass matrices are
non-diagonal
Mass basis: The fermion masses are diagonal, but some gauge currents (charged weak interactions)
are not diagonal in flavour space
In the weak basis: LYukawa
= CP violating
In the mass basis: LYukawa → LMass = CP conserving
July 1-2, 2004
=>What happened to the charged current interactions (in LKinetic) ?
26
LW
 LCKM
: The Charged Current
The charged current interaction for quarks in the interaction basis is:
 LW 
g
2


uLiI
d LI i W
The charged current interaction for quarks in the mass basis is:
 LW 

g
2
uLi VLu
  VLd † d Li W
VCKM  VLu VLd † 
The unitary matrix:
With:
†
VCKM  VCKM
1
is the Cabibbo Kobayashi Maskawa mixing matrix:
LW 

g
2
d 
 u , c , t L VCKM   s 
b
 L
Lepton sector: similarly
  W
VMNS  VLn  VLl † 
However, for massless neutrino’s: VLn = arbitrary. Choose it such that VMNS = 1
=> There is no mixing in the lepton sector
July 1-2, 2004
27
Flavour Changing Neutral Currents
To illustrate the SM neutral current take the W3 and B term of the Kinetic Lagrangian:
g 
g  I
- L NC (Q )   iQ  ( W3  3  B ) QLi
2
6
And consider the Z-boson field:
Z   cos W W3  sin W B 
I
Li
I
Li 
- LZ (QLiI )  
g
cos W
and
tan W  g  g
 1 1 2  I
 I
   sin W  QLi  Z QLi
 2 3

Take further QLiI=dLiI
 1 1 2  I
 I
   sin W  d Li  Z d Li
 2 3

g  1 1 2 
d
d†

 
   sin W  d Li  VL VL d Li Z
cos W  2 3

- L Z (d LiI )  
g
cos W
- LZ (QLi )  
g
cos W
 1 1 2 

   sin W  d Li  d Li Z
 2 3

In terms of physical fields no non-diagonal
contributions occur for the neutral
Currents. => GIM mechanism
July 1-2, 2004
Use:
(VRu †VRu  VRd †VRd  1)
 ...   uLi  uLi Z 
Standard Model forbids flavour changing
neutral currents.
28
Charged Currents
The charged current term reads:
g I   I
g I   I


uLi W d Lj 
d Lj  W u Li  J CC
W  J CC
W
2
2
 1  5    *  1  5 
g  1  5     1  5 
g

ui 
dj 
  W Vij 
dj 
  W Vij 
 ui
2  2 
2  2 
 2 
 2 
g
g

ui WVij 1   5  d j 
d j  WV ji* 1   5  ui
2
2
LCC 
(Together with (x,t) -> (-x,t))
Under the CP operator this gives:
CP
LCC 

g
d j WVij 1   5  ui
2

g
ui WiVij* 1   5  d k
2
A comparison shows that CP is conserved only if
Vij = Vij*
In general the charged current term is CP violating
July 1-2, 2004
29
Charged Currents
The charged current term reads:
g I   I
g I   I


uLi W d Lj 
d Lj  W u Li  J CC
W  J CC
W
2
2
 1  5    *  1  5 
g  1  5     1  5 
g

ui 
dj 
  W Vij 
dj 
  W Vij 
 ui
2  2 
2  2 
 2 
 2 
g
g

ui WVij 1   5  d j 
d j  WV ji* 1   5  ui
2
2
LCC 
(Together with (x,t) -> (-x,t))
Under the CP operator this gives:
CP
LCC 

g
d j WVij 1   5  ui
2

g
ui WiVij* 1   5  d k
2
A comparison shows that CP is conserved only if
Vij = Vij*
In general the charged current term is CP violating
July 1-2, 2004
30
Where were we?
July 1-2, 2004
31
The Standard Model Lagrangian (recap)
LSM  LKinetic  LHiggs  LYukawa
• LKinetic : •Introduce the massless fermion fields
•Require local gauge invariance => gives rise to existence of gauge bosons
=> CP Conserving
• LHiggs : •Introduce Higgs potential with <> ≠ 0
GSM  SU (3)C  SU (2) L  U (1)Y  SU (3)C  U (1)Q
•Spontaneous symmetry breaking
The W+, W-,Z0 bosons acquire a mass
=> CP Conserving
• LYukawa : •Ad hoc interactions between Higgs field & fermions
=> CP violating with a single phase
• LYukawa → Lmass :
• fermion weak eigenstates:
-- mass matrix is (3x3) non-diagonal
• fermion mass eigenstates:
-- mass matrix is (3x3) diagonal
• LKinetic
July 1-2, 2004
in mass eigenstates: CKM – matrix
=> CP-violating
=> CP-conserving!
=> CP violating with a single phase
32
Quark field re-phasing
Under a quark phase transformation:
d Li  eidi d Li
u Li  eiui u Li
and a simultaneous rephasing of the CKM matrix:
 e u

V 


e c
e t
  Vud

  Vcd
  Vtd

Vus Vub   e d

Vcs Vcb  
Vts Vtb  
the charged current

J CC
 uLi Vij d Lj
Degrees of freedom in VCKM in
Number of real parameters:
Number of imaginary parameters:
Number of constraints (VV† = 1):
Number of relative quark phases:
Total degrees of freedom:
Number of Euler angles:
Number of CP phases:
July 1-2, 2004
e  s



b 
e 
or


V j  exp i  j    V j
is left invariant
3
N generations
9
+ N2
9
+ N2
9
- N2
5
- (2N-1)
----------------------4
(N-1)2
3
N (N-1) / 2
1
(N-1) (N-2) / 2
2 generations:
VCKM
 cos 

  sin 
sin  

cos  
No CP violation in SM.
This is the reason Kobayashi
and Maskawa first suggested
a third family of fermions!
33
The LEP collider @ CERN
Aleph
L3
Delphi
Opal
MZ
Maybe the most important result of LEP:
“There are 3 generations of neutrino’s”
Light, left-handed, “active”
July 1-2, 2004
34
The lepton sector (Intermezzo)
•
N. Cabibbo: Phys. Rev.Lett. 10, 531 (1963)
– 2 family flavour mixing in quark sector (GIM mechanism)
•
M.Kobayashi and T.Maskawa, Prog. Theor. Phys 49, 652 (1973)
– 3 family flavour mixing in quark sector
•
Z.Maki, M.Nakagawa and S.Sakata, Prog. Theor. Phys. 28, 870 (1962)
– 2 family flavour mixing in neutrino sector to explain neutrino oscillations!
•
In case neutrino masses are of the Dirac type, the situation in the lepton
sector is very similar as in the quark sector: VMNS ~ VCKM.
– The is one CP violating phase in the lepton MNS matrix
•
In case neutrino masses are of the Majorana type (a neutrino is its own antiparticle → no freedom to redefine neutrino phases)
– There are 3 CP violating phases in the lepton MNS matrix
• However, the two extra phases are unobservable in neutrino oscillations
– There is even a CP violating phase in case Ndim = 2
July 1-2, 2004
35
Lepton mixing and neutrino oscillations
Question:
•
In the CKM we write by convention the mixing for the down type quarks; in the
lepton sector we write it for the (up-type) neutrinos. Is it relevant?
– If yes: why?
– If not, why don’t we measure charged lepton oscillations rather then neutrino
oscillations?
W+
lL I

J CC

νL I
ne

n
 
g
g
li  Vijn j  
liVij  n j
2
2
However, observation of neutrino oscillations is
possible due to small neutrino mass differences.
W
July 1-2, 2004
36
Rephasing Invariants
The standard representation of the CKM matrix is:
 Vud

V   Vcd
V
 td
Vus Vub  
c12 c13
 
Vcs Vcb     s12c23  c12 s23 s13ei
Vts Vtb   s12 s23  c12 c23 s13ei
s12 c13
c12c23  s12c23 s13e i
c12 s23  s12 c23 s13ei
s13e i
s23c13
c23c13





cij  cos ij
sij  sin ij
However, many representations are possible. What are the invariants under re-phasing?
•
•
Simplest: Ui = |Vi|2 is independent of quark re-phasing
Next simplest: Quartets: Qibj = Vi Vbj Vj* Vbi* with ≠b and i≠j
– “Each quark phase appears with and without *”
•
V†V=1: Unitarity triangle: Vud Vcd* + Vus Vcs* + Vub Vcb* = 0
–
–
–
–
–
•
•
Multiply the equation by Vus* Vcs and take the imaginary part:
Im (Vus* Vcs Vud Vcd*) = - Im (Vus* Vcs Vub Vcb*)
J = Im Qudcs = - Im Qubcs
The imaginary part of each Quartet combination is the same (up to a sign)
In fact it is equal to 2x the surface of the unitarity triangle
Im[Vi Vbj Vj* Vbi*] = J ∑eb eijk where J is the universal Jarlskog invariant
Amount of CP Violation is proportional to J
July 1-2, 2004
37
The Unitarity Triangle
The “db” triangle:
VudVub*  VcdVcb*  VtdVtb*  0
 VtdVtb* 
  arg  
 arg  Qubtd 
* 
 VudVub 

Vud Vub
unitarity: VCKM† VCKM = 1
 VcdVcb*
b  arg  
*
 VtdVtb
Vtd Vtb*
*

  arg  Qtbcd 

 VudVub* 
  arg  
 arg  Qcbud 
* 
V
V
 cd cb 
Area = ½ |Im Qudcb| = ½ |J|

b
Vcd Vcb*


Under re-phasing: V j  exp i  j    V j
the unitary angles are invariant
(In fact, rephasing implies a rotation of the whole triangle)
July 1-2, 2004
38
Wolfenstein Parametrization
Wolfenstein realised that the non-diagonal CKM elements are relatively
small compared to the diagonal elements, and parametrized as follows:
 1 l2 / 2
l

V 
l
1 l 2 / 2
 Al 3 1    i   Al 2

Al 3    i  

4
Al 2
  O l 

1

 Vud

  Vcd
 Vtd eib

Normalised CKM triangle:
,
Vus
Vcs
Vts
Vub ei
Vcb
Vtb







(0,0)
July 1-2, 2004
b
(1,0)
39
CP Violation and quark masses
Note that the massless Lagrangian has a global symmetry for unitary
transformations in flavour space.
Let’s now assume two quarks with the same charge are degenerate
in mass, eg.:
ms = mb
Redefine: s’ =
Vus s + Vub b
Now the u quark only couples to s’ and not to b’ : i.e. V13’ =
0
Using unitarity we can show that the CKM matrix can now be written as:
 cos 

VCKM     sin  cos 
 sin  sin 

sin 
0 

cos  cos  sin  
 cos  sin  cos  
Necessary criteria for CP violation:
July 1-2, 2004
CP conserving
mu  mc
, mc  mt
, mt  mu
md  ms
, ms  mb
, mb  md
,
40
The Amount of CP Violation
Using Standard Parametrization of CKM:

c12 c13

V    s12 c23  c12 s23 s13ei
 s12 s23  c12c23 s13ei

s12c13
c12c23  s12c23 s13ei
c12 s23  s12c23 s13ei
s13e  i
s23c13
c23c13





J  c12c23c132 s12 s23s13 sin    3.0  0.3 105
cij  cos ij
sij  sin ij
(eg.: J=Im(Vus Vcb Vub* Vcs*) )
(The maximal value J might have = 1/(6√3) ~ 0.1)
However, also required is:
m
2
t
 mc2   mc2  mu2   mt2  mu2   mb2  ms2   ms2  md2   mb2  md2   0
All requirements for CP violation can be summarized by:


m det  M d M d† , M u M u† 
  2 J  mt2  mc2   mc2  mu2   mu2  mt2 
  mb2  ms2   ms2  md2   md2  mb2 
 6 105  4 1010 (GeV12 )  0  CP Violation
July 1-2, 2004
Is CP violation maximal? => One has to understand the origin of mass!
41
Mass Patterns
Mass spectra ( = Mz, MS-bar scheme)
Observe:
mu ~ 1 - 3 MeV , mc ~ 0.5 – 0.6 GeV , mt ~ 180 GeV
md ~ 2 - 5 MeV , ms ~ 35 – 100 MeV , mb ~ 2.9 GeV
mu
mc
mc
mt
l4 ,
me = 0.51 MeV , m = 105 MeV
md
ms
ms
mb
l2
, m = 1777 MeV
Why are neutrino’s so light? Related to the fact that they are the only neutral fermions?
See-saw mechanism?
• Do you want to be famous?
• Do you want to be a king?
• Do you want more then the nobel prize?
- Then solve the mass Problem –
R.P. Feynman
July 1-2, 2004
42
Matter - antimatter asymmetry
In the visible universe matter dominates over anti-matter:
•There are no antimatter particles present in cosmic rays
•There are no intense -ray sources in the universe due to matter anti-matter collisions
July
1-2, 2004
Hubble
deep
field - optical
43
Big Bang Cosmology
Equal amounts
of matter &
antimatter
q+q⇄ +
July 1-2, 2004
Matter Dominates !
+ CMB
44
The matter anti-matter asymmetry
Cosmic Microwave Background
WMAP satellite
Angular Power Spectrum
 T 1 , 1 
 T 2 , 2 

July 1-2, 2004
l
N baryons
N photons
2.7248K
2.7252K
 T  ,    almYlm  , 
10
 (6.50.4
)

10
0.3
Almost all matter annihilated with
antimatter, producing photons…
45
The Sakharov conditions
NB  NB

NB  NB
Convert 1 in 109 anti-quarks into a quark in an early stage of universe:
NB  NB
 109
N
Anti-
A matter dominated universe can evolve in
case three conditions occur simultaneous:
1) Baryon number violation: L(B)≠0
2) C and CP Violation: G(N→f) ≠ G(N→f)
3) Thermal non-equilibrium:
otherwise: CPT invariance => CP invariance
July 1-2, 2004
Sakharov (1964)
46
Baryogenesis at the GUT Scale
Conceptually simple
GUT theories predict proton decay mediated by heavy X gauge bosons:
d
u
u
e+
X
u- 0
p
u
proton
X boson has baryon number violating (1)
couplings: X →q q, X→q l
Proton lifetime:   1032 s
Efficiency of Baryon asymmetry build-up:
A simple Baryogenesis model:
CP Violation (2) : r ≠ r
BX
 r   2 / 3 
BX
 r   2 / 3 
Decay
process
Decay
fraction
B
X→qq
r
2/3
X→ql
1-r
1/3
X→qq
r
-2/3
nq
X→ql
1-r
-1/3
n
BX BX

1  r   1/ 3
1  r    1/ 3
1 / 3   r  r 
Assuming the back reaction does not occur (3):

n
1
r  r  X
3
n0
Initial X number density
Initial light particle
number density
July 1-2, 2004
47
Baryogenesis at Electroweak Scale
Conceptually difficult
SM Electroweak Interactions:
1) Baryon number violation in weak anomaly:
Conserves “B-L” but violates “B+L”
2) CP Violation in the CKM
3) Non-equilibrium: electroweak phase transition
Electroweak phase transition wipes
out GUT Baryon asymmetry!
Can it generate a sufficiently large
asymmetry?
Problems:
1. Higgs mass is too heavy. In order to have a first order phase transition:
Requirement: mH < ~ 70 GeV/c2 , from LEP mH > ~ 100 GeV/c2
2. CP Violation in CKM is not enough:
Requirement:
N  B
 109
N  
from CKM:
N B  N B J CKM
 12  1020
NB  NB
Tc
Leptogenesis:
• Uses the large right handed majorana neutrino masses in the see-saw mechanism to
generate a lepton asymmetry at high energies (using the MNS equivalent of CKM).
• Uses the electroweak sphaleron (“B-L” conserving) processes to communicate this to a
baryon asymmetry, which survives further evolution of the universe.
July 1-2, 2004
48
Conclusion
Key questions in B physics:
• Is the SM the only source of CP Violations?
• Does the SM fully explain flavour physics?
Biertje?
July 1-2, 2004
49