Transcript Slides
Nir Bitansky and Omer Paneth
The Result
Assuming OT there exist a
resettably-sound ZK protocol
(Previous constructions of
resettably-sound ZK relied on CRHF)
Zero-Knowledge Proofs
Zero
Knowledge
Soundness
π₯ β β?
π«
π±
Zero-Knowledge Proofs
Soundness
π₯ββ
π«β
π±
Zero-Knowledge Proofs
Zero
Knowledge
π₯ββ
π«
π±β
Intuition:
π± β βknowsβ how to generate a proof itself!
π«
π±β
We can efficiently extract a proof from π± β
The Simulator
Accepting transcript:
π±β
Simulator
The Simulator
π±β
π«
β
π±β
Simulator
Black-Box Simulator
π±β
Black Box
Simulator
Non-Black-Box Simulator
π±
β
Non Black Box
Simulator
Black-Box vs. Non-Black-Box
Can Non-Black-Box Simulation
really achieve more than
Black-Box Simulation?
Black-Box vs. Non-Black-Box
Constant-round public-coin ZK
(for NP, with negligible soundness error)
Not considering 3-round ZK from KEA
[Hada-Tanaka 98, Bellare-Palacio
04]
CRHF + PCP
Argument
Black Box
Simulator
[Goldreich-Krawczyk 90]
Non Black Box
Simulator
[Barak 01]
Black-Box vs. Non-Black-Box
Black Box
Simulator
Non Black Box
Simulator
Constant-round public-coin ZK
GK90,B01
Resettably-sound ZK
BGGL01
Constant-round bounded-concurrent ZK and MPC
B01,PR03
Constant-round ZK with strict polynomial-time
simulation\knowledge extraction
BL02
Simultaneously resettable ZK and MPC
DGS09,GM11
Constant-round covert MPC
GJ10
Constant-round public-coin parallel ZK
PRT11
Simultaneously resettable WI proof of knowledge
COSV12
Non-Black-Box Simulation
BGGL01,B01,PR03,BL02,DGS9,GS09,
GM11,GJ10,PRT11,COSV12β¦
Barak
Barak 01
01
Non-Black-Box Simulation
BGGL01,B01,PR03,BL02,DGS9,GS09,
GM11,GJ10,PRT11,COSV12β¦
Barak 01
CRHF + PCP
Barakβs ZK Protocol
The FLS paradigm: [Feige-Lapidot-Shamir 99]
Generation protocol for
trapdoor π
π«
Witness indistinguishable
proof that π₯ β β or
π« βknowsβ π
π±
Barakβs ZK Protocol
The FLS paradigm: [Feige-Lapidot-Shamir 99]
A proof generated using a witness for π₯ β β
and a proof generated using the trapdoor π
are protocol
indistinguishable
Generation
for
trapdoor π
π«
Witness indistinguishable
proof that π₯ β β or
π« βknowsβ π
π±
Barakβs ZK Protocol
Q: Can we have a trapdoor generation
protocol where π± is public-coin?
A: Not using black-box simulation.
Barakβs ZK Protocol
Q: Can we have a trapdoor generation
protocol where π± is public-coin?
A: (Barak 01) Yes!
Trapdoor is the entire code of π±
β
Problem of βLongβ Trapdoor
(Or: problem of βshortβ messages)
π«
Witness indistinguishable
proof that π₯ β β or
π« βknowsβ π = π± β
π± β is an arbitrary
polynomial
π±
Barakβs ZK Protocol
Fixing the problem:
1. Use a Universal Argument β a succinct
witness indistinguishable proof
based on PCPs [kilian 92, Barak-Goldreich 08]
2. Use a collision-resistant hash function to give a
shrinking commitment to trapdoor.
Non-Black-Box Simulation
BGGL01,B01,PR03,BL02,DGS9,GS09,
GM11,GJ10,PRT11,COSV12β¦
Barak 01
CRHF + UA\PCP
Are Barakβs techniques inherent in
non-black-box simulation?
No!
Can its applications be achieved
without collision-resistant hashing
and universal arguments?
Yes!
Resettable Protocols
π΄
π΅
Resettable Protocols
π΄π΄
π΅
Resettable Protocols
π΄
π΅
Resettable ZK
[Canetti-Goldreich-Goldwasser-Micali 00]
π₯ββ
π«
π±β
Resettably-Sound ZK
[Micali-Reyzin 01,
Barak-Goldreich-Goldwasser-Lindell 01]
π₯ββ
π«β
π±
Resettably-Sound ZK
[Barak-Goldreich-Goldwasser-Lindell01,
Goldreich-Krawczyk 90]
π«
π±
Black Box
Simulator
Resettably-Sound ZK
Black Box
Simulator
π±
π«β
π±
π±β
Black Box
Simulator
Resettably-Sound ZK
[Barak-Goldreich-Goldwasser-Lindell 01]
π«
π±
Non Black Box
Simulator
Using CRHF and UA
The Result
Assuming only OT there exist a
constant-round resettably-sound ZK
protocol that does not make use of UA.
The Technique
A new non-black-box simulation technique
from the Impossibility of Obfuscation
Program Obfuscation
πͺ is an obfuscation of a function family ππ :
ππ
π₯
π΄
π
πͺ
Ξ k
ππ (π₯)
β
Ξ k
π΄
Obfuscation and ZK
If we can obfuscate π± β :
π±β
β
πͺ(π± )
Non Black Box
Simulator
Black Box
Simulator
Resettably-Sound ZK
Obfuscation and ZK
Assuming OWFs, there exist a family of
functions ππ that can not be obfuscated.
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang 01]
Resettably-Sound ZK
βEasyβ
Impossibility of obfuscation
Obfuscation and ZK
Assuming OWFs, there exist a family of
functions ππ that can not be obfuscated.
[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang 01]
Resettably-Sound ZK
βHardβ
Impossibility of obfuscation + OT
Unobfuscatable functions
ππ
1. βπ΄, π β π:
2. βπΈ, βπΆ β‘ ππ :
π΄
πΆ
πΈ
π
π
The Protocol
π = πΆππ(π)
π¦=0
π
π«
π β ππ
π
Secure function
evaluation of ππ (π¦)
ππ (π¦) where π = πΆππ(π)
Witness Indistinguishable
proof that π₯ β β or
π« βknowsβ π
π
π±
Proof Idea - Resettable Soundness
π = πΆππ(π)
π¦
π«β
π
ππ (π¦) SFE of ππ (π¦)
π β ππ
π±
ππ
π«β
π
Proof Idea β Zero Knowledge
Non Black Box Simulator
π±β
πΆ β‘ ππ
πΈ
π
Proof Idea β Zero Knowledge
πΆ β‘ ππ
π = πΆππ(π)
π¦
ππ (π¦)
π
SFE of ππ (π¦)
π±β
Non Black Box Simulator
π±β
πΆ β‘ ππ
πΈ
π
Proof Idea β Zero Knowledge
πΆ β‘ ππ
π = πΆππ(π)
π¦
β₯
β₯
SFE of ππ (π¦)
π
π¦
π
πΆ π¦ =
β₯
π±β
π
w.p.
w.p. 1 β π
Proof Idea β Zero Knowledge
πΆ β‘ ππ
πΆβ² β‘ ππ \ β₯
π¦
πΆβ² β‘ ππ \ β₯
π±
β
β₯
ππ (π¦)
β¦
1
π
π±β
πΆβ² β‘ ππ \ β₯
π±β
β₯
ππ (π¦)
Proof Idea β Zero Knowledge
Non Black Box Simulator
π = πΆππ(π)
π¦=0
π
ππ (π¦)
π±β
π
π β ππ
SFE of ππ (π¦)
πΆ β‘ ππ
πΈ π
Witness Indistinguishable
proof that π₯ β β or
π« βknowsβ π
π±β
The SFE Protocol
ππ
π = πΆππ(π)
π«
β
π¦
ππ (π¦)
SFE of
ππ (π¦)
π
π±
π«β
How
Howto
to instantiate
instantiate
this box?
box?
this
π = πΆππ(π)
π¦
ππ (π¦)
SFE of
ππ (π¦)
π
π±β
πΆ β‘ ππ
The SFE Protocol
π¦
Semi-honest SFE of ππ (π¦)
π
ZK proof of knowledge
π«
ZK proof of knowledge
ππ (π¦)
π±π±
The SFE Protocol
π¦
Semi-honest SFE of ππ (π¦)
π
ZK proof of knowledge
π«
ZK proof of knowledge
ππ (π¦)
π±
The SFE Protocol
π¦
Semi-honest SFE of ππ (π¦)
π
Resettably-sound ZK POK
Based on resettably-sound ZK
[BGGL01,GS09]
π«
Resettable ZK POK
ππ (π¦)
π±
The SFE Protocol
ππ
π = πΆππ(π)
π«
β
π¦
ππ (π¦)
SFE of
ππ (π¦)
π
π±
π«β
π₯ββ
π₯ββ
π = πΆππ(π)
π¦
ππ (π¦)
SFE of
ππ (π¦)
π
π±β
πΆ β‘ ππ
Instance-dependent SFE
π₯ββ
π₯ββ
SFE π₯ of ππ (π¦)
ZK
POK
Resettable POK
Resettable ZK
+ Strongly unobfuscatable functions
Instance-dependent SFE
π« π±ππΌ
π΅1
π
π«ππΌ π±
π΅3
π₯ββ
POK
π₯ββ
Resettable ZK WI
Instance-dependent SFE
Com(π)
π« π±ππΌ
π΅1
π
π«ππΌ π±
π΅3
π₯ββ
POK
π₯ββ
Resettable ZK
Instance-dependent SFE
Comπ₯ (π)
π« π±ππΌ
π΅1
π
π«ππΌ π±
π΅3
π₯ββ
POK
π₯ββ
Resettable ZK
Simulation Running Time
Non Black Box Simulator
π±β
πΆ β‘ ππ
πΈ
π
Simulation Running Time
πΆ β‘ ππ
πΆβ² β‘ ππ \ β₯
π¦
πΆβ² β‘ ππ \ β₯
π±
β
β₯
πΆβ² β‘ ππ \ β₯
π±β
ππ (π¦)
ππ (π¦)
poly(π)
πΆ =
π
β¦
1
π
π±β
β₯
Proof Idea β Zero Knowledge
Non Black Box Simulator
π = πΆππ(π)
π¦=0
π
ππ (π¦)
π±β
π
π β ππ
SFE of ππ (π¦)
πΆ β‘ ππ
πΈ π
Witness Indistinguishable
proof that π₯ β β or
π« βknowsβ π
π±β
Simulation Running Time
Non Black Box Simulator
π±β
πΆ β‘ ππ
πΈ
π
π
w.p.
|πΆ|
π =
poly(π) w.p. 1 β π
πΌ π
poly π
=πβ
+ 1 β π β
poly π = poly π
π
Simulation Running Time
Non Black Box Simulator
π±β
πΈ
πΆ β‘ ππ
π
πΈ(πΆ) = π( πΆ 2 )
πΌ π
poly π
=πβ
π
2
1
+ 1 β π β
poly π >
π
Simulation Running Time
π = πΆππ(π)
π¦=0
π«
π β ππ
π
ππ (π¦)
SFE of ππ (π¦)
Witness Indistinguishable
proof that π₯ β β or
π« βknowsβ π
π±
Simulation Running Time
π = πΆππ(π)
π¦=0
π
ππ (π¦)
π«
π β ππ
SFE of ππ (π¦)
π¦=0
π
ππ (π¦)
SFE of ππ (π¦)
Witness Indistinguishable
proof that π₯ β β or
π« βknowsβ π
π±
Simulation Running Time
Non Black Box Simulator
π±β
πΈ
πΆ β‘ ππ
π
poly π
πΆ =
π
πΌ π
poly π
=πβ
π
2
+ 1 β π β
poly π = poly π
Comparison to [Barak 01]
# rounds
Assumptions
Uses
Trapdoor
PCP\UA Length
PublicCoin
Barak 01
O(1)
CRHF
Yes
Long
Yes
This work
O(1)
OT
No
Short
No
One More Application
Simultaneously resettable ZK
π₯ββ
π«β
π₯ββ
π±
π«
π±β
[BGGL 01]: Can a protocol be resettable ZK
and resettably-sound simultaneously?
Simultaneously resettable ZK
π₯ββ
π«β
π₯ββ
π±
[Deng-Goyal-Sahai 09]: Yes!
π«
π±β
Simultaneously resettable ZK
Resettably-sound ZK
Non-black-box simulation
Long trapdoor
Short trapdoor
Black-box simulation
Bounded concurrent ZK
Concurrent ZK
Resettable ZK
Simultaneously resettable ZK
Resettably-sound ZK
Non-black-box simulation
Short trapdoor
Black-box simulation
Concurrent ZK
Resettable ZK
Simultaneously resettable ZK
π = πΆππ(π)
π¦=0
×π
π«
ππ (π¦)
π β ππ
π
SFE of ππ (π¦)
π± 12]
[Cho-Ostrovsky-Scafuro-Visconti
Simultaneously Resettable
Witness Indistinguishable
proof that π₯ β β or
π« βknowsβ π
?
ο