ΒΙΟΑΕΡΙΟ ΤΕΜΠΩΝ_ΜΠΕ_Παράρτημα 3

Download Report

Transcript ΒΙΟΑΕΡΙΟ ΤΕΜΠΩΝ_ΜΠΕ_Παράρτημα 3

Μελέτη Περιβαλλοντικών Επιπτώσεων µονάδας Βιοαερίου --- ΒΙΟΑΕΡΙΟ ΤΕΜΠΩΝ Ι.Κ.Ε.
Παράρτηµα 3: ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΤΕΚΜΗΡΙΩΣΗ
ΠΑΡΑΡΤΗΜΑ 3
ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΤΕΚΜΗΡΙΩΣΗ
() * ( + , + - + .
!"#$%&"'
!"#$%"&'()#*+,-$"#(&
!" #$#%#&
'()*+,-).
/-0*1*233456738*39*,*1:;,(<:(1=3>+,(1?03:@AB03A,?:B03.C?031*:=CC;CB03D(*39?0+.<;3EFG3HIFJK36LLMN
8@A)23
A,?:;23@C;23
&,D*0(1O3
A+,(+9O>+0)
P0*C)D-*3
Q7R
S&3T
UH3T3
:;23S&
/*,*DBDV3
'()*+,-).
m3WXYZM3UH
P0+A([@>;:+23
\.<(1]23
*1*[*,<-+2
^CC*3
*0+A([@>;:*3
.C(1=
"#$%&'(
)*+%,-(
.*/%01
"#$2-13%$)4'5(
+%024614'5(
7,+/#,$
89!:
89;
<:9;:
:5 =9:5=:
>?@A$2$(BC7*D5(
@)7E%?'(2%/.4'5(
14%F5(-AA*'5(
@.*,1,-5(-.D%*
G12,H,*2,)-5
$+*7DA$12,)-
"#$%&'(
)*+%,-(
H**4,#I1
"#$2-13%$)4'5(
+%024614'5(
7,+/#,$
J9 :
=9!
;:
:5 :9:58:
K)7E%?'(2%/.4'5(
.IA$5(14%F5(
-.D%$5(BC7$
G12,H,*2,)-5
$+*7DA$12,)-5(
LM4+
"#$%&'(
)*+%,-(
+*D74%,)I1
"#$2-13%$)4'5(
+%024614'5(
7,+/#,$
89!:
!:98:
;:
:58=9:5J:
GAA*.-7,)*5(
-AA*'5(N24%-
G12,H,*2,)-5(
$+*7DA$12,)-5(
LM4+,
O4%,4.FA41$(
@2*A$.,I15(
412?%01
"#$2-13%$)4'5(
+%024614'5(
7,+/#,$
<=9;:T(
7$)2FUE
:9 =T(
+%024614'
89=
!=
;:
:5P:9:5J;
Q0,)*/(,@2*/
G12,H,*2,)-5
$+*7DA$12,)-
VWXWY
;9!
Z:
:58=9:5;:
G)$3$%@/4'(
A42$N*%-'
VWXWY
:9 =
Z:
:5;:9:5Z=
G)$3$%@/4'(
A42$N*%-'
RD%FS$7*
KDA+D)10A?9
1*'(*%F'(S-9
7$)2*'
<=9;:T(
7$)2FUE
:9 =T(
+%024614'
[7C'(
4+/+74D@E'
J=9<:T(
+%024614'
8:98=T(
7,+/#,$
G+*+7CA$2$(
2E'(UCA0@E'
"#$2-13%$)4'
].D%*
"#$2-13%$)4'5(
7,+/#,$
Q0,)*/(,@2*/
P9!:
;:9!::
!9=
;:9Z=
<:9Z:
;:9Z:
:58=9:5<;
:5!=9:58=
R$(AE(#,$@+IA41$(
D+*74/AA$2$(
N%*C201
]AA*'5(
$AA*.-7,)*
^IA$5(
)D22$%,1*C.$(
@D@2$2,)-
G+FH7E2$(
$+F()&+*D'
!::9!=:
J:9<:
Z:
:5 :9:5=:
^7FE
! 9 =
:9 =
Z:
:5==
GAA*.-7,)*
K0%F'(.7FE'
!:9 =
!=9 =
Z:
:5=J
GAA*.-7,)*
G+FH7E2$(
$+F(N%*C2$
8=
!=9 :
<=
:5 =9:5=:
[.3D?7$,$
8:9=:T(
7,+/#,$
VWXWY
`7$,$(@FS,$'a
A$%S$%/1E
Z:T(ND2,)-(
?7$,$
VWXWY
G7)*F7
P:T($7)*F7
VWXWY
"+*74/AA$2$(
2%*N/A01
!:
;:
c%S$1,)-(
*,),$)-(
$+FH7E2$
:5=:9:5J:
\$%,-(A?2$77$5(
$+*7DA$12,)-5(
*%S$1,)*/(
%C+*,
_D2*N-%A$)$
_D2*N-%A$)$
bF)$7$5(
+7$@2,)F
G+*7DA$12,)-
O7$@2,)F5(
A?2$77*5(+?2%4'5(
BC7*5(SD$7/
\$%?$(
A?2$77$5(
*%S$1,)*/(
%C+*,
\$%?$(
A?2$77$5(
*%S$1,)*/(
%C+*,
dDA$2*7-@+E
Y(AE(#,$3?@,AE(2,A&
!
!" #$#%#&
'()*+,-).
/ // 01012/3+,4)5,*6-*
"#$%&'()*+)#,-.#/0#123'&+#4)#2')(1),323%-5&+#*&#$%)63'&,%78.#5&'137')*+&.9#23:#;<'+=34,)%#*&#,'+)#
5&'137')*%)7>#&?'-@#A:;'B6%C-#D7>,<#)2B# EoFG9#1&*B6%C-#D E#H#IEoFG9#7)%#5&'1B6%C-#DIEHJKoFGL#
M2>';&%#1%)#>1&*-#*:*;8,%*-#1&,)N?#,-.#5&'137')*+).#,-.#$%&'()*+).#7)%#,3:#M0O#DO+4)7).#PLIGL#
7-8*5*9/01:;/3+,4(5</6=<>(*/5*(/?*,*5=@,(6=(5)-/?,A8)(/B*,*4)8C9
3+,4(5A/6=<>()///
A:;'B6%C3
1&*B6%C3
5&'1B6%C3
3+,4)5,*6-+9/>(+,D*6-*9//
E<?(6=)9/?,A8)9/B*,*4)8C9///
Q# K#RF
PK#8<.#I #RF
IP#8<.#EE#RF
JK#8<.#SK#-18'&.
PK#8<.#IK#-18'&.
TE#8<.# K#-18'&.
"#*,)5&'B,-,)#,-.#5&'137')*+).#8;&%#7)53'%*,%7U#*-1)*+)#(%)#,-4#/0L#V,-4#2'>N-9#-#5&'137')*+)#
C&%,3:'(+).#&2%C8(&,)%#*&#*:4>',-*-#1&#,-#;'-*%1323%3?1&4-#2'W,-#?C-#7)%#-#5&'137')*+)#$%&'()*+).#
*:4U5<.#2)'8;&,)%#)2B#&4$3$)28$%)#U#&2%,3+;%)#*:*,U1),)#58'1)4*-.9#18*)#*,34#;<4&:,UL#X3#*;U1)#
PLJ#$&+;4&%#,3:.#*;&,%73?.#':513?.#2)')(<(U.#Y%3)&'+3:#)4>C3()#1&#,-#5&'137')*+)#7)%#,3#;'B43#
2)')134U.L
F?C4*/01G;/F?+=(5)-/,.H4)-/B*,*DIDC9/'()*+,-)./*8<E)D*/4+/=@/H+,4)5,*6-*/5*(/=)8/?,A8)/B*,*4)8C9/JKLM/NOOGP
O3CC8.#*?(;'34&.#134>$&.#Y%3)&'+3:#C&%,3:'(3?4#*&#5&'1B6%C&.#5&'137')*+&.#$%&'()*+).9#7)5W.#-#
5&'1B6%C-#2)'8;&%#)'7&,>#2C&34&7,U1),)#84)4,%#,-.#1&*B6%C-.#7)%#A:;'B6%C-.9#B2<.@
Z#
Z#
Z#
Z#
Z#
Z#
/23,&C&*1),%7U#7),)*,'36U#,<4#2)53(B4<4#3'()4%*1W4
MA-CB,&'3#23*3*,B#)?N-*-.#1&5)43(&4W4#Y)7,-'+<4#*&#:A-CB,&'&.#5&'137')*+&.
[&%<1843.#;'B43.#2)')134U.9#23:#7)5%*,>#,-#$%&'()*+)#('-(3'B,&'-#7)%#)23$3,%7B,&'\&C,%<184-#%7)4B,-,)#;W4&:*-.#7)%#$%)5&*%1B,-,)#,<4#:23*,'<1>,<4#
])C?,&'-#$%>*2)*-#,<4#*,&'&W4#:23*,'<1>,<4#7)%#7)C?,&'-#;'U*-#,<4#:23*,'<1>,<4
])C?,&'-#$:4),B,-,)#$%);<'%*13?#,<4#:('W4#7)%#*,&'&W4#7C)*1>,<4L
X)#7?'%)#1&%34&7,U1),)#,-.#5&'1B6%C-.#$%&'()*+).#&+4)%@
Z#
Z#
Z#
^#1&()C?,&'3.#Y)51B.#)*,>5&%).
"#1&()C?,&'-#=U,-*-#&48'(&%).#CB(<#,-.#:A-CU.#5&'137')*+).
^#:A-CB,&'3.#7+4$:43.#2)'&12B$%*-.#,-.#)11<4+).L
!
!" #$#%#&
'()*+,-).
/012*345673 8(9:;8<9<3=>?30,19+>?3=).3'()*+,-).
3 4563#@(;=<=+A3=).3'()*+,-).
"#$ %&%'(%)*+,$ -%')%.,/%&#$ 0#1$ 2)#*%'3#1$ *-,$ 04&$ 56$ %3&*)$ .4/)+7$ 8%9/%1/:&#$ 90#$ /%;7&)#<$ =)$
)8),040%>$+*)$4$9?90*94>$0#1$2)#*%'3#1$-#)+3@@#1&$*&7@#(*$/%$0#&$0?-#$+*)$04$8#/A$04>$-'B04>$?@4>C$
0#$9?904/*$04>$/#&78*>C$04$;%'/#+'*93*C$0#&$.',&#$-*'*/#&A>$+*)$7@@#1>$-*'7(#&0%><$D0#&$E3&*+*$
F<G$-*'#19)7H#&0*)$+7-#)%>$*-,$0)>$/:9%>$0)/:>$9?90*94>$0#1$2)#*%'3#1$/%$2794$04&$2)2@)#('*I3*<$
J%K'B&0*>$,0)$0#$2)#*:')#$-%'):.%)$FLM$/%;7&)#C$4$/:94$;%'/*&0)+A$0)/A$0#1$%3&*)$-%'3-#1$NG$OPQ
RSTC$4$/:94$-1+&,040*$GCNN$UVQRST$+*)$4$/7H*$0#1$%3&*)$-*',/#)*$/%$*10A$0#1$*:'*$WGCNX$UVQRSTY<
B-?*:*A345673/C9=*9<3=).3'()*+,-).
/.9=*=(:;
"<2(:;A3=C8)A
B+,(+:=(:;=<=*3D:*=E3;F:)GHI
Z%;7&)#
CH4
FL[\F
])#^%38)#$0#1$7&;'*+*
_`N
NF[ F
a8'*0/#3
H N`
N$WNLb_Y$[\$W Lb_Y
=^1(,&#
`N
cN
dHK0#$
RN
cN
5//K&3*$
Re!
cG
a8'#(,&#
HN
cG
a8',;%)#
H NS
cG
f$2)#.4/)+A$9?90*94$0K&$8)*I#'%0)+B&$0?-K&$-'B04>$?@4>$-#)+3@@%)$+*)$%3&*)$+*;#')90)+A$()*$04$
;%K'40)+A$-*'*(K(A$0#1$/%;*&3#1C$,-K>$I*3&%0*)$90#&$E3&*+*$F<N<
B-?*:*A345J73K+>,<=(:138*,*F>F13'()*+,-).
L8;9=,>2*
5+*0:'(*904$-'K0%g&4
5+*0:'(*90#$@3-#>
a8*07&;'*+%>
M-=,*3*+,-).3N3OP3QRS
TU43VHW
TX23VHW
\LL
\L$/%$\G
NX$/%$!L
G<NLL$/%$G<NFL
h\$/%$hi
!N$/%$!!
\XL$/%$iLL
FL
FL
j$klm$=@)+7$D0%'%7$Wknopq$lnqrstY
!
!" #$#%#&
'()*+,-).
!"#$#%&%'!()*#+,-.!/&+!01#23$&+!."-4/$&(5/&+!/67!89!):#$/5/#1!#"3!/-!")$1);3()+3!/-.7!4)!
"$&/)<+)7=!>,"6=!?#1!.0#/5+*$#?)7=!3"&7!2#,+)/#1!4/-+!@,+#?#!ABCB
/-0*1*2345673/*,*898:3;+<*0-).3*=>3?(*@),+A(1B23=,CA+23DE+2
/*,*898:3;+<*0-).3GHI
/*,*898:3'()*+,-).
GJKLMN/OPI
D0#$'7!?-"$15!E--)10F+
GH
IA
D0#$'7!?-"$15!;-,$&+
GA
IJ
K"->),((#/#!#"-4/#?/6$,&+!()!01#>./5
GL
MH
N/)$)'!?-"$15!E--)10F+
GH
45
N/)$)'!?-"$15!;-,$&+
GH
GH
N/)$)'!?-"$15!"-.>)$1?F+
GH
JH
O)P/>#
AC
JJ
Q$%#+1?5!#"3E>6/#
GL
LHH
R>.?3!43$%-
54
LHJ
O)P/>#!?/6+-/$-2'7
AL
LLL
N&$37!;>367
54
LSI
N&$37!?#>#("-?1-P
AI
IHI
/,CAF3DEF
T!U@K!VWWX!Y!U$Z4?1#!@$F/6![>6!VW\]^_!W]]`^abcdX
3 45Q3R;+SF31*DSF31*(3T,:SF3AF23<+,;>AFA*2
Q!#">-P4/)$-7!/$3"-7!;$'467!/-.!E1-#)$,-.!),+#1!6!5()46!?#P46!/-.!4)!>ZE6/)7!'!?#.4/'$)7=!"-.!
;$641(-"-1-P+/#1!?#/5!?3$-+=!%1#!/-!E1-#Z$1-!"-.!"#$5%)/#1!#"3!(1?$-P7!-1?-%)+)1#?-P7!;&+)./Z7B!
!5()46!?#P46!)2#$(3e)/#1!4)!#$?)/Z7!;F$)7=!4)!?#.4/'$)7!2.41?-P!#)$,-.B!O-!E1-#Z$1-!("-$),!+#!
?#),!%1#!/6+!"#$#%&%'!*)$(3/6/#7!),/)!)",!/3"-.=!),/)!+#!()/#2)$*),!()!4&>6+F4)17!4/-.7!/)>1?-P7!
;$'4/)7B!R1#!/17!)2#$(-%Z7!*Z$(#+467!/-!E1-#Z$1-!0)+!;$)15e)/#1!?#(,#!#+#E5*(146=!)+F!/-!)",")0-!
(3>.+4'7! /-.! 0)+! ")$1-$,e)1! /6! ;$'46! /-.! #)$,-.! /34-! 34-! 4/6+! ")$,"/&46! 5>>&+! )2#$(-%F+B!
f4/34-=!/-!E1-#Z$1-!"$Z")1!+#!."-E>6*),!4)!4.("P?+&46!?#1!#2#,$)46!/&+!4&(#/10,&+=!4.(",)46=!
gP:6!?#1!:'$#+46B!
3 4563U.0?.*S;B0F3=*,*898:3FE+1A,(S;)D31*(3<+,;>AFA*23VUWXY
!4.+0.#4(Z+6!"#$#%&%'!6>)?/$14(-P!?#1!*)$(3/6/#7!VN hX!),+#1!6!/."1?'!)2#$(-%'!/-.!E1-#)$,-.!
#"3! /6+!89! 4)! "->>Z7! ;F$)7! ?#1! *)&$),/#1! &7! (1#! "->P! #"-0-/1?'! ;$'46! /-.! E1-#)$,-.! %1#! /6+!
"#$#%&%'!)+Z$%)1#7B!@$1+!#"3!/6!()/#/$-"'!4/6!N h=!/-!E1-#Z$1-!4/$#%%,e)/#1!?#1!:6$#,+)/#1B!Q1!
")$1443/)$)7!(6;#+Z7!#)$,-.!Z;-.+!(Z%14/#!3$1#!%1#!/-!.0$3*)1-=!/-.7!#>-%-+1?-P7!.0$-%-+5+*$#?)7!
?#1!/17!)+F4)17!-$%#+-".$1/,-.!V41>-:5+)7X!4/-!E1-#Z$1-B!i1#!(-+50#!N h!"-.!;$641(-"-1),!(6;#+'!
)4&/)$1?'7! ?#P467! Z;)1! #"-0-/1?3/6/#! (Z;$1! jHk! ?#1! "#$5%)1! CAk! 6>)?/$1?'! )+Z$%)1#! ?#1! GAk!
*)$(3/6/#B
! "1-! 4.+'*67! )2#$(-%'! /&+! (-+50&+! N h! ),+#1! -1! *)$(1?Z7! )%?#/#4/54)17! 6>)?/$-"#$#%&%'7!
/P"-.!4.4/-1;,#7!VlmmnX=!()!?1+6/'$)7!?#P467!"-.!4.+0Z-+/#1!()!(1#!%)++'/$1#B!Q1!%)++'/$1)7!Z;-.+!
4.+'*&7!(1#!4/#*)$'!/#;P/6/#!")$14/$-2'7!VLBAHH!4/$-2Z7o>)"/3X!"$-?)1(Z+-.!+#!),+#1!4.(E#/Z7!
()! /6! 4.;+3/6/#! /-.! 01?/P-.B! Q1! ?1+6/'$)7! ("-$),! +#! ),+#1! (6;#+Z7! Z%;.467! /P"-.! paab=! q/,e)>! '!
"1>-/1?Z7B!O34-!-1!(6;#+Z7!#)$,-.!q/,e)>!34-!?#1!-1!paab!>)1/-.$%-P+!;&$,7!")/$Z>#1-!#+52>):67=!
4P(2&+#! ()! /6+! #$;'! /-.! paabB! ! 01#2-$5! #./F+! /&+! (6;#+F+! ),+#1! (3+-! 4/6! 4.(",)46B! r#/5!
4.+Z")1#=! 4/-! ."3>-1"-! ?),()+-! ?#1! -1! 0P-! #./-,! /P"-1! (6;#+F+! *#! #+#2Z$-+/#1! &7! (6;#+Z7! paabB!
44
!" #$#%#&
'()*+,-).
"#$%#&'(#)'*+,(#-&./.,(#+0*#120/,(#+34/*,(#543/.6#(0#.6(0*#7#89-7#-&0#0('&:/'#4/3;8<50&0=#
.4*&/:43(&0>##&*>#?*8*+:>#4/3>#&3#4./*;@883(#A.'/A*+:>#4/0+&*+:>B#
///012/345/678/*9*6:,;*<67/.=*,>/9)4,(?/<6)/@A8+B:8)/.45C+(BB*/AD/////
/////////+=*E)'+C6(A6(95
///////0121F/G()=(?<4*<7/67D/),;*8(9>D/).<-*D/
"#.4.C./A0-60#&'(#)'*+,(#-&./.,(#+0*#120/,(#+34/*,(#-&*>#53(@2.>#;*30./631#327A.6#-&7#;*32*@-40-7#
&'(# 3/A0(*+,(# .(,-.'(# -.# 0(D/A0(.># 31-6.># +0*# 5.E@(*3B# F&7(# 4/@C7=# 3*# 53(@2.># ;*30./631# 431#
.4.C./A@)3(&0*#&*>#-&./.:>#+0*#120/.6>#+34/*:>#:G31(#:(0#+8@-50#2*@-40-7>#&7>#3/A0(*+<>#31-60>#
&7>#&@C7>#&31#HIJ#A*0#&7(#120/<#+34/*@#;33.*2,(#+0*#K J#A*0#&7(#120/<#+34/*@#G36/'(B#L3#+8@-50#
2*@-40-7># .C0/&@&0*# +1/6'># 04D# &3(# &943# &7># 4/,&7># 987># MN6(0+0># KBOP=# &3(# 12/018*+D# G/D(3#
40/053(<>#MQ%NP#+0*#&7#E./53+/0-60#&7>#2*./A0-60>B#RDA'#&7>#143;@E5*-7>#&7>#3/A0(*+<>#31-60>=#
A6(.&0*#.1+38D&./3#(0#0(&87E.6#&3#G'(.5:(3#14D8.*550#+0*#(0#G/7-*5343*7E.6#'>#.20?3;.8&*'&*+D=#
5.#5.*'5:(7#0(@A+7#A*0#0(@2.1-7=#-.#-9A+/*-7#5.#&7(#57#.4.C./A0-5:(7#120/<#+34/*@B#
H-8*9*D/01FI/J*6*8)B>/6A8/K,+46(9L8/).<(L8/<6)/@A8+B:8)/.45C+(BB*
M7,>/).<-*
N
OP8)C)/Q/
RSTUVW
QX4YQ
RSTUVW
Z
RSTUVW
[
RSTUVW
\X
Q20/<>#+34/*@#
;33.*2,(
K=I
=I
S=T
I=T
!=
K=
Q20/<>#+34/*@#
G36/'(
H=I
=I
!=T
O=I
S=I
U=I
%'(.5:(7#120/<>#
+34/*@
S=T
=I
H=I
I=V
S=T
U=
///////01212/]+-A<7/6A8/)<BL8/
W*0# 04D# &*># 0C*34/D-.G&.># E.&*+:># .C.86C.*># 8DA'# &7>#$%# &7># -&./.<># +34/*@>=# .6(0*# 7# -750(&*+<#
5.6'-7#&'(#3-5,(#M4&7&*+@#3C:0=#?0*(D87#+0*#40/@A'A0#?0*(38,(PB#"#.54.*/60#2.6G(.*#D&*#04D#&7(#$%#
543/.6#(0#5.*'E.6#5:G/*#+0*#&3#TIJ#&'(#3-5,(#&'(#143-&/'5@&'(#4/,&7>#987>B#X.(#4/D+.*&0*#5D(3#
A*0#5.6'-7#&7>#:(&0-7>#+0*#&7>#2*0&</7-7>#&'(#3-5,(#MFG<50#KBOP=#088@#+0*#5*0#E.&*+<#0880A<#-&7#
-9(E.-7#&'(#3-5,(=#+0E,>#&3#G'(.5:(3#14D8.*550#2.(#:G.*#48:3(#&7#21-@/.-&7#51/'2*@#&7>#120/39>#
+34/*@>=# 088@# 51/6).*# 4./*--D&./3# D4'># 7# 055'(60B# $+D50# +*# 0(# 043E7+.9.&0*# A*0# 5.A089&./.>#
G/3(*+:>#4./*D231>=#&3#G'(.5:(3#14D8.*550#2.(#40/31-*@).*#+0560#09C7-7#-&7(#.+4354<#3-5,(B#L3#
FG<50#KBO#2.6G(.*#D&*#OS#,/.>#5.&@#04D#&7(#.?0/53A<#&31#G'(.5:(31#1438.6550&3>=#7#51/'2*@#:G.*#
-G.2D(#.C0?0(*-&.6B
O@>B*/01FI/ 47,+*^5B+87/4+,()@>//9*(/=(*6>,7<7/67D//5@C7<7D/C5;A/)<BL8_/B+6?/678/+E*,B);>/6)./@A8+B:8)./.4)C+-BB*6)D/9*(/67D/B7//
////////////////////+4+`+,;*<B:87D/.=*,)PD/9)4,(?D_/<+/;+A,;(9:D/+96?<+(D/B+/'),+()=.6(95/?8+B)/abcd[efgh/2ii2j
!
!" #$#%#&
'()*+,-).
/012345+(*067809)84:780'()*+,-).
#$%&'&(%)*+$%&,$-$.),'/*012&$3,&4$3/567&4$8,/&)02/*$(9)'2:)'&,$3)$;5&5$&0,<3=$&>=$(-3&5',%6$
:-'+3&'&$ &(?6.),&4$ >/*@$ )65$ 7)5$ .-?</A5$ *>B$ =C-@$ )1%*3/5/A5$ >,<&5/A4$ %,57A5/*4$ 1,&$ '/*4$
&5<0D>/*4@$'&$:D&$%&,$'/$>)0,86../5E$#$.+C-$'F5$%&'6..-.F5$>0/?*.6G)F5$%&,$3;'0F5$&(?6.),&4$
;9),$ F4$ (%/>=$ '-5$ &>/?*1+$ />/,F57+>/')$ %,57A5F5$ %&,$ )>,%257*5F5$ %&'&('6()F5$ %&,$ (*386.),$
('-5$ )G&(?6.,(-$ 3,&4$ &(?&./A4$ .),'/*012&4$ '-4$ 3/567&4E$ #$ ;1%0,(-$ '-4$ /,%/7/3,%+4$ 67),&4$
)G&0'6'&,@$3)'&GA$6..F5@$&>=$'-5$)%>.+0F(-$'F5$(-3&5',%D5$:-'-36'F5$&(?6.),&4$%&,$'-$.+C-$
%&<&06$>0/.->',%D5$3;'0F5$%&,$).;19/*$'F5$8.&8D5$=>F4H$
I$
I$
I$
I$
I$
I$
I$
I$
I$
I$
I$
I$
I$
I$
J0=.-C-$;%0-G-4
J0=.-C-$>*0%&1,64
K-9&5,%/2$%257*5/,
L'&',%='-'&$'-4$%&'&(%)*+4
#.)%'0,%+$&(?6.),&
M5',%)0&*5,%+$>0/('&(2&
N)03,%+$&(?6.),&
J0/('&(2&$&>=$)%>/3>;4$</0A8/*
J0=.-C-$1,&$&(?*G2&@$7-.-'-02&(O1,),5+$%&,$%'-5,&'0,%+$&(?6.),&
M>/?*1+$'F5$0*>/1=5F5$)%>/3>D5$&)02F5
J0=.-C-$'F5$7,&00/D5$('&$*>=1),&$%&,$)>,?&5),&%6$A7&'&$
M>/?*1+$'-4$&>).)*<;0F(-4$0A>F5$%&'6$'-$7,60%),&$'-4$7,6<)(-4$'F5$&>/8.+'F5
M5',>.-33*0,%+$&(?6.),&E
000/;<0=,>5?@?0A.,B*C(4D0B*(0EB,?F?D
O>=$ /0,(3;5)4$ (*5<+%)4@$ '/$ 8,/&;0,/$ ()$ (*57*&(3=$ 3)$ '/5$ &;0&$ 3>/0)2$ 5&$ 7-3,/*01+(),$
;5&$)%0-%',%=$&;0,/$3)213&E$P$%257*5/4$>*0%&1,64$%&,$;%0-G-4$)25&,$,7,&2')0&$*C-.=4$%/5'6$
('Q*4$9F5)*';4$%&,$',4$7)G&3)5;4$&)02/*E$R&'6$(*5;>),&@$%&'6$'-$7,60%),&$'-4$%&'&(%)*+4$%&,$
.),'/*012&4$'F5$3/567F5$8,/&)02/*$>0;>),$5&$'-0/A5'&,$(*1%)%0,3;5&$3;'0&$&(?6.),&4E$L'/*4$
>25&%)4$SE $%&,$SET$(*1%025/5'&,$'/$8,/&;0,/$%&,$'&$%A0,&$(*('&',%6$'/*$3)$6..&$&;0,&@$=(/5$
&?/06$('-5$,%&5='-'&$;%0-G-4E$R&,$(',4$7A/$>)0,>'D(),4@$-$3;(-$(A5<)(-$8,/&)02/*$%&'B$=1%/$
)25&,H$K)<65,/$"!U@$V,/G)27,/$'/*$65<0&%&$WXU$%&,$6..&$&;0,&$TU.
=-8*B*D0/;<G0#:(>6?6+D06780*+,-780HIJK0LMMNO
N)03/1=5/4$7A5&3J*%5='-'&
M5&./12&$>*%5='-'&4$&)02/*$>0/4$
'/5$&;0&$$
N)03/%0&(2&$&56?.)G-4$
eA0/4$;%0-G-4
P)84:*
Q()*E,()
YZ[\]^
Y_\]^
cd
%&'B$
=1%/5fU
=,)A48()
P+S48()
T:,)C>8)
"
@T
R.2(B>0
*E,()
!
!@`
T"
T@!
!
!@`T
W
!@!S
!@S
!@ab
@a
!@aa
!@!`
`!!
"a!
b`!
"!!
aXa
"$g$ T
b@b$g$ a
@`$f$ !@S
b@b$f$ "@a
b$f$``
!"
The biogas handbook
© Woodhead Publishing Limited, 2013
Biomass resources for biogas production
Table 2.1
booster)
Type of
feedstock
21
Characteristics of some biogas feedstocks (* indicates methane
Organic
content
Animal wastes and by-products
Pig slurry
Carbohydrates,
proteins, lipids
Pig manure, solid Carbohydrates,
proteins, lipids
Cattle slurry
Carbohydrates,
proteins, lipids
Cattle manure,
Carbohydrates,
solid
proteins, lipids
Poultry droppings Carbohydrates,
proteins, lipids
Poultry manure,
Carbohydrates,
solid
proteins, lipids
Stomach/intestine Carbohydrates,
content, cattle
proteins, lipids
Stomach/intestinal Carbohydrates,
content, pig
proteins, lipids
Plant wastes and by-products
Straw
Carbohydrates,
lipids
Garden wastes
Carbohydrates,
lipids
Grass
Carbohydrates,
lipids
Fruit wastes
Carbohydrates,
lipids
Organic wastes from industries
Whey
75–80% lactose,
20–25% protein
Concentrated
75–80% lactose,
whey
20–25% protein
Flotation sludge
65–70% proteins,
30–35% lipids
Fermentation slop Carbohydrates
Whole silage
(grain)
Thin silage (grain)
*Fish oil
30–50% lipids
*Soya oil/
90%
margarine
vegetable oil
*Alcohol
40% alcohol
*Bleach clay
Olive pulp
Brewers spent
grains
*Glycerine
C:N DMa
ratio (%)
VSb
% of
DM
VS Methane Methane
(%) yield
production
(m3 CH4/ (m3 CH4/m3)
kg VS)
7
5
80.0
4.0
0.30
12.0
20
80.0
16.0 0.30
48.0
8
80.0
6.4
12.8
20
80.0
16.0 0.2
32.0
5
80.0
4.0
0.30
12.6
20
80.0
16.0 0.30
48.0
4
12
80
9.6
0.40
38.4
4
12
80
9.6
0.46
44.2
90
70–90 80–90
0.15–0.35
125
60–70 90
0.20–0.50
18
20–25 90
0.30–55
35
15–20 75
0.25–0.50
—
5
90
4.5
0.33
15.0
—
10
90
9.0
0.54
31.5
—
5
80
4.0
0.54
21.6
7
1–5
12.6
90
91
0.35–0.78
11.5 0.47
53.9
8.5
90
95
86
90
90
7.3 0.50
81.0 0.80
85.5 0.80
36.5
648.0
684.0
40
98
24
20
95
40
96
90
38.0
39.2
23
18
152.0
313.6
41.4
59.4
13
7
—
—
—
—
—
0.20
0.40
0.8
0.18
0.33
(Continued)
© Woodhead Publishing Limited, 2013
22
The biogas handbook
Table 2.1 (Continued)
Type of
feedstock
Organic
content
Energy crops
Grass silage
Maize silage
Fodder beet
silage
17
Sewage sludge
Waste water
sludge
Conc. wastewater
sludge
Food remains
a
b
C:N DMa
ratio (%)
VSb
% of
DM
VS Methane Methane
production
(%) yield
3
(m CH4/ (m3 CH4/m3)
kg VS)
15–40 90
<0.45
5
75
3.75 0.4
15.0
10
75
7.5
30.0
10
80
0.4
0.5–0.60
Dry matter.
Volatile solids.
utilization of biogas feedstocks (Wellinger, 2009). Although its utilization as
a biogas feedstock is still in the research phase, aquatic biomass is one of the
biomass types with the highest potential for renewable energy production as
well as various industrial applications and a possible future alternative to
energy crops.
2.2.1 Agricultural biogas feedstocks
The feedstock substrates used for biogas are primarily derived from the
agricultural sector, which accounts for the largest potential for biogas
feedstocks (Steffen et al., 1998). These feedstocks consist mainly of various
residues and by-products, of which the most important are animal manures
and slurries collected from farms (from cattle, pigs, poultry, etc.). Along
with manure and slurry, crop residues, by-products and wastes (e.g. straw,
grasses, leaves, fruits, whole plants) are also used. Over the last decade, new
categories of feedstocks have been tested and are now used in AD plants;
this is the case of energy crops (maize, grasses, beets, sunflowers, etc.),
grown specially for biogas production.
Animal manure and slurries
Animal farming is an important part of the agricultural sector in most
countries, accounting for 18% of worldwide greenhouse gas emissions (InfoResources 2007). Most of these emissions originate from the 13 billion tons
of animal manure and slurries estimated to be produced annually around
© Woodhead Publishing Limited, 2013
Design and engineering of biogas plants
.
.
.
.
197
Degradation rate. The higher the temperature, the faster the degradation
of the organic matter. Thermophilic digesters require shorter retention
times and therefore smaller reactor volumes.
Hygienisation effect. The higher the temperature, the better the
pathogen inactivation during digestion. In accordance with national
legislation, thermophilic digestion can replace feedstock pre-treatment
by hygienisation.
Process stability. The higher the temperature, the higher the sensitivity
of the process to changes in temperature, pH and feeding rate.
Furthermore, high temperatures enhance the transformation of
ammonium (NH4) to ammonia (NH3), which increase the risk of
microbial inhibition.
Energy consumption. The higher the temperature, the higher the energy
demand.
Psychrophilic temperatures occur in biogas plants without heating systems,
such as family-size biogas plants, mainly in developing countries.
Degradation is too slow for reactors with high efficiency requirements.
Mesophilic temperatures, which allow satisfactory retention times and
moderate energy demand, are the most commonly used. In particular,
CSTRs with a high water content should not have excessive energy
consumption for heating in order to maintain a reasonable global energy
efficiency. Thermophilic temperature ranges are mainly used for substrates
with a hygiene risk, typically food wastes. In plants with more than one
digestion tank, thermophilic and mesophilic reactors can be combined and
substrates can go through one or both of them, depending on their pathogen
risk and degradation rate.
8.2.5 Reactor volume
The reactor volume needs to be adapted to the amount of feedstock and the
degradation rate of the key substrates. On the one hand, micro-organisms
must have sufficient time for the degradation process and, on the other, the
concentration of organic matter must not be of a level that leads to over
feeding of the microbes and thus process inhibition. To ensure the right
balance is achieved, two parameters are used to calculate the digester
volume – the organic loading rate (OLR) and the hydraulic retention time
(HRT).
The OLR describes the amount of volatile dry matter (VDM) introduced
into the digester, expressed in kilogrammes VDM per day and per cubic
metre of digester (kg VDM/m3day). For CSTR digesters, the OLR is
typically between 2 and 3 kg VDM/m3day. It can go up to 4 or even
5 kg VDM/m3day, but the higher the organic load, the more sensitive the
© Woodhead Publishing Limited, 2013
198
The biogas handbook
system becomes and more monitoring is required (Eder and Schulz, 2006).
Plug-flow digesters function with a higher OLR, up to 10 kg VDM/m3day.
The formula for calculating the organic load is given by equation 8.1. The
digester volume includes the volume of the post-digesters.

€
OLR kg VDM=m3 day ¼
Substrate input (kg/day)6DM (%)
6VDM ð% of DMÞ
 €
½8:1$
Digester volume m3
The HRT describes the theoretical time period that the substrates stay in the
digester. It describes the mean retention time that, in reality, deviates from
this value, especially in CSTR systems where shortcuts occur. The HRT
must be chosen in order to allow adequate substrate degradation without
increasing the digester volume too much. Washout of the microbes must
absolutely be avoided, therefore the HRT must not be below 10 days (Eder,
2006). The HRT is calculated from
 €
Net digester volume m3
HRTðdaysÞ ¼
½8:2$
Substrate input ðm3 =dayÞ
Both the OLR and the HRT make reference to the effective digester volume,
which is the volume actually available to the substrates. To obtain the total
digester volume, the headspace above the liquid level (eventual gas storage)
needs to be taken into account. Box 8.1 shows a worked example.
8.2.6 Reactor material and protection
Digestion tanks of reinforced concrete and steel are most widely used.
Reinforced concrete tanks benefit from the high tensile strength of steel and
high compression strength of concrete. Appropriate concrete quality (blastfurnace cement and low lime content) and professional construction are
important to prevent corrosion and leaks in the tank wall. Concrete
digesters can be built partially or completely in the ground. Steel digesters
are built on concrete foundations above ground. Steel plates are welded or
bolted together and seams are tightened. For parts in contact with corrosive
fluids highest quality stainless steel is recommended (Eder and Schulz,
2006). Glass-coated or galvanised steel is used when there is no risk of
corrosion.
Vulnerable parts of the reactor should be protected by coatings or liners
in order to avoid corrosion. Substrates, biogas and condensate can contain
aggressive substances (e.g. hydrogen sulphide, ammonia, organic acids and
even microbes) that disintegrate concrete and plastic. In steel and concrete
reactors built from high-quality materials, the zone in contact with the
substrate does not normally need protection, but the zone in contact with
© Woodhead Publishing Limited, 2013
284
The biogas handbook
12.4 Distribution of the principal constituents after solid–liquid
separation (adapted from Bauer et al., 2009).
12.5
Decanter centrifuge (DANETV, 2010).
Solid–liquid separation of digestate by decanter centrifuge
Decanter centrifuges can be used to separate the majority of the phosphorus
contained in digestate with the fiber fraction (Møller, 2001). Several
commercial brands of decanter centrifuges are now utilized for digestate
separation, with similar performances; an example is shown in Fig. 12.5.
Tables 12.6 and 12.7 show test results of the GEA Westfalia decanter
centrifuge (DANETV, 2010). Testing was carried out on five batches, for a
minimum of 4 hours each, with a fixed start and end time for each batch.
© Woodhead Publishing Limited, 2013
Land application of digestate
305
Table 13.2 Mean nutrient concentrations from four farm digesters co-digesting
dairy manure and waste grease
Feedstock mixture
(dairy manure + grease)
Digestate
Change
Total solids
(g/kg)
Total N
(g/kg)
NH4+–N
(g/kg)
Total P
(g/kg)
PO43–P
(g/kg)
131 ± 22
3.5 ± 0.6
1.4 ± 0.3
0.5 ± 0.1
0.3 ± 0.0
57 ± 5
56.4%
3.6 ± 0.4
None
1.9 ± 0.5
+35.7%
0.5 ± 0.0
None
0.4 ± 0.1
+ 33.3%
Note: Mean concentrations reported on wet mass basis ± standard deviation.
Source: Data collected by University of Guelph.
contaminants are present in the digestate, local regulations stipulating the
legal limits for the land application of the contaminants must be respected.
13.2.2 Transformation of nutrients and pathogen die-off
during digestion
During anaerobic digestion, organic matter is degraded, with organic C
converted to CH4 and CO2. As well, nutrients in organic matter are
transformed into their inorganic forms; for example, organic N is converted
to NH4+–N and organic P is converted to PO43–P (Gerardi, 2003). It
should be noted the total nutrient content remains the same during
digestion; only their respective forms are changed. Table 13.2 summarizes
the mean change in digestate characteristics from four farm mesophilic
(408C) digesters in Ontario, Canada, co-digesting liquid dairy manure with
waste grease.
The increased concentration of inorganic nutrients, particularly
NH4+–N, can contribute to increased crop yields as mineral nutrients are
readily available for crop uptake soon after land application. However, if
the pH of the digestate is high enough (pH > 7.2) and climate conditions are
suitable, increased quantities of unionized ammonia (NH3) may volatilize
upon surface application. The impacts associated with the land application
of digestate compared to raw manure on crop productivity and on the
environment are addressed later in the chapter.
The die-off of pathogens in anaerobic digesters has always been of
importance in the treatment of sewage sludge and is now of greater interest
in the treatment of agriculture residues, as it may lead to reduced pathogen
migration to soil subsurface drainage tiles. Pathogens can be inactivated
during exposure to heat above their optimum growth temperature. The
period of exposure is dependent on the temperature and on the species of the
organism. A lab study conducted by Kumar et al. (1999) demonstrated a 3log reduction in E. coli and Salmonella after 10 days of batch digestion of
© Woodhead Publishing Limited, 2013
Heat and power from biogas for stationary applications
411
exceeding 0.1 mg/Nm3 (Persson et al., 2006). A high concentration of
ammonia in biogas is a problem because combustion of ammonia in gas
engines leads to the formation of nitrous oxide (NOx). Most engines can
accept ammonia concentrations of 100 mg/Nm3 (Persson et al., 2006).
Ammonia formation can be avoided by controlling the biogas process, as
ammonia is formed at high pH and temperature. Adjusting the C/N ratio of
the feedstock can also avoid ammonia formation. The removal of ammonia
is usually combined with other biogas cleaning procedures.
Oxygen and nitrogen
The presence of O2 and N2 in biogas can lower the heating value of the gas
and cause corrosion in gas pipelines and other equipment. Normally, O2 and
N2 are not present in biogas from sewage and dedicated AD plants, as
methane is formed under anaerobic conditions (without O2). On the other
hand, landfill gas contains O2 (1–3% vol) and N2 (1–17% vol) as some air
may be sucked in together with the landfill gas through the underpressure
collection system (Rasi, 2009). Moreover, a high O2 content in the biogas
(6–12%) can lead to an explosion due to presence of combustible CH4 in the
biogas mixture (Vandeweyer et al., 2008). Finally, the removal of O2 and N2
– if present in large quantities – can be costly and impede the use of biogas
for vehicle fuel or grid injection. Oxygen in biogas is generally removed
during the desulphurisation process. Other applicable methods include
adsorption processes (e.g. with activated carbon or molecular sieves).
17.3
Utilisation of biogas for the generation of electric
power and heat in stationary applications
Over the years, biogas collection and utilisation technologies have
improved. Several technologies that convert biogas to more useful forms
of energy are now available. For direct substitution of biogas for natural
gas, the biogas has to be cleaned of impurities (especially H2S, siloxanes,
water vapour etc.) and the equipment has to be slightly modified to prevent
corrosion and maintain the right gas feed pressure and fuel-to-air ratio in
order to ensure flame stability.
Table 17.2 presents a comparison of typical power generation units with
their capacities, efficiencies, fuel consumption and heat recovery rates. The
performance and characteristics of some of these technologies have
improved in recent times due to increased experience of using of biogas
for electricity generation.
© Woodhead Publishing Limited, 2013
© Woodhead Publishing Limited, 2013
900–1500
0.005–0.010
Natural gas
25–40
30–50
70–75
Very good
Medium
Low 25–50 mg/
Nm3 flue gas
3500–15 000
Large
Gas turbine
Natural gas,
kerosene, fuel
oil
600–1200
0.008–0.015
25–30
30–35
55–65
Very good
Medium
Low
30–300
Small
Micro turbine
300–1500
Small
Fuel cell
1300–1500
0.003–0.005
3000–4000
0.003–0.010
40–45
30–40
75–80
Good
High
Extremely low
(3 mg/Nm3 flue
gas)
Natural gas, fuel Natural gas
oil, biomass
30–40
35–40
65–80
Very good
Low-medium
Very low
<150
Small
Stirling engine
b
Unit capacity varies depending on manufacturer.
Heat recovery is estimated as a percentage of fuel input.
c
Installed costs vary with type and amount of auxiliary equipment.
d
Maintenance costs are dependent on gas quality.
Source: adapted with permission from Chambers and Potter (2002), Obernberger et al. (2003) and Deublein and Steinhauser (2008);
Wiley-VCH Verlag GmbH & Co. KGaA, Germany.
a
Investment costs (€/kWel)c
400–1100
Operation and maintenance cost (€/kWh)d 0.01–0.02
Alternative fuel source
Liquid gas
110–3000
Small to
medium
30–42
40–50
70–80
Not possible
Medium
High 500–700
mg/Nm3
Unit capacity (kWel)a
Plant size
Electrical efficiency (%)
Thermal efficiency (%)b
Overall system efficiency (%)
Power/heat ratio production control
Biogas purification requirement
Emissions NOx
Engine
Comparison of biogas power generation in stationary applications
Parameter
Table 17.2